
  

Collections, Part Three



  

Announcements

● Two handouts online
● Assignment 2: Fun with Collections
● Section Handout 



  

Announcements

● Section assignments finalized ~5pm 
tonight.

● No class on Thursday
● No sections on Thursday.  You have two 

options:
● Go to the SCPD section in person
● Watch SCPD section online



  

Lexicon



  

Lexicon

● A Lexicon is a container that stores a 
collection of words.

● No definitions are associated with the 
words; it is a “lexicon” rather than a 
“dictionary.”

● Contains operations for
● Checking whether a word exists.
● Checking whether a string is a prefix of a 

given word.



  

Tautonyms

● A tautonym is a word formed by 
repeating the same string twice.
● For example: murmur, couscous, papa, etc.

● What English words are tautonyms?



  

Some Aa

http://upload.wikimedia.org/wikipedia/commons/f/f1/Aa_large.jpg



  

http://travel.paintedstork.com/blog/image/yellow_browed_bulbul.jpg

One Bulbul



  

More than One Caracara

http://www.greglasley.net/images/CO/Crested-Caracara-F3.jpg



  

Introducing the Dikdik



  

tautonyms
(Pseudocode)



  

foreach

● You can loop the elements of any 
collection class using the foreach macro:

  foreach (type var in collection) {

     /* … do something with var … 
*/ 

  }

● foreach is not a part of standard C++; 
it's a macro that we've built to keep 
things simple.



  

tautonyms.cpp
(On Computer)



  

Anagrams

● Two phrases are anagrams of one 
another if they have the same letters, but 
in a different order.

● Examples:
● Stanford University → A Trusty Finned Visor
● Keith Schwarz → Zither Whacks
● Dawson Zhou → Whoa! Zounds!

● Question: Given an English word, can 
we find all anagrams of that word?



  

Anagram Clusters

● An anagram cluster is a set of words 
that are all anagrams of one another.

stop ↔ tops ↔ pots ↔ spot ↔ opts ↔ post      

● If we want to find all anagrams of a 
word, we can find its anagram cluster, 
then list off all the words in that cluster.

● Two questions:
● How do we store an anagram cluster?
● How do we find the anagram cluster 

associated with a given word?



  

Set



  

Set

● The Set represents an 
unordered collection of 
distinct elements.

● Elements can be added 
and removed, and you can 
check whether or not an 
element exists.
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Set

● The Set represents an 
unordered collection of 
distinct elements.

● Elements can be added 
and removed, and you can 
check whether or not an 
element exists.

42
2718



  

Operations on Sets

● You can add a value to a set by writing

set += value;
● You can remove a value from a set by 

writing

set -= value;

● You can check if a value exists by writing

set.contains(value)

● Many more operations available (union, 
intersection, difference, subset, etc.), so 
be sure to check the documentation.



  

Set

Set<int> numbers;

numbers += 137;

numbers += 2718;

numbers += 42;

numbers += 42;

numbers -= 42;
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Set
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Set
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Set

Set<int> numbers;

numbers += 137;

numbers += 2718;

numbers += 42;

numbers += 42;

numbers -= 42;
42

2718

137

42 already in numbers, 
no changes.

42 already in numbers, 
no changes.
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Anagram Clusters

● We can store each anagram cluster as a 
Set<string>.

● We still need a way of associating words 
to anagram clusters.



  

Map



  

Map

● The Map class 
represents a set of 
key/value pairs.

● Each key is associated 
with a unique value.

● Given a key, can look up 
the associated value.
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Map

● The Map class 
represents a set of 
key/value pairs.

● Each key is associated 
with a unique value.

● Given a key, can look up 
the associated value.

CS106B Awesome!

Dikdik Cute!

Djikstra Pathfinding



  

Using the Map

● You can create a map by writing

Map<KeyType, ValueType> map; 

● You can add or change a key/value pair by writing

map[key] = value;

If the key doesn't already exist, it is added.

● You can read the value associated with a key by writing

map[key]

If the key doesn't exist, it is added and associated with 
a default value.

● You can check whether a key exists by calling

map.containsKey(key) 



  

Anagram Clusters

● We can use Map<string,Set<string> > 
to match strings to anagram clusters
● Key: Some sort of unique identifier for each 

anagram cluster
● Value: Set of words in the anagram cluster

● What should we use for the key?  How 
can we uniquely identify an anagram 
cluster?



  

Sorting Letters

● One way to check whether two words are 
anagrams of one another is to reorder the 
letters into ascending order:

bleat → abelt  

table → abelt  

Idea: Build a Map<string, Set<string>> to 
represent anagram clusters.

Each key is the letters of a word in sorted order.

Each value is the set of all words with those 
letters.



  

Sorting Letters

● One way to check whether two words are 
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represent anagram clusters.
● Each key is the letters of a word in sorted order.
● Each value is the set of all words with those 

letters.



  

Counting Sort
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Counting Sort
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Counting Sort

b a n a n a

Map<char, int>
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n 2



  

Ordering in foreach

● When using foreach to iterate over a 
collection:
● In a Vector, string, or array, the elements 

are retrieved in order.
● In a Map, the keys are returned in sorted 

order.
● In a Set or Lexicon, the values are returned 

in sorted order.
● In a Grid, the elements of the first row are 

returned in order, then the second row, etc. 
(this is called row-major order).



  

Counting Sort
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Counting Sort

b a n a n a

Map<char, int>

b 1
a 3
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sort() 
anagram-clusters.cpp

(On Computer)



  

anagram-clusters
(Pseudocode)



  

anagram-clusters.cpp
(Computer)



  

foreach

● Friends don't let friends modify a 
collection when using foreach to iterate 
over it's elements
● Will cause your program to crash.

Set<int> s;
s += 1; s += 2;
foreach (int i in s) {
s.remove(i); //ERROR!!!

}



  

Lexicon or Set<string>?

● Both the Lexicon and Set<string> can 
be used to represent a collection of 
strings.  So which should you use?

● It turns out that the Lexicon is better for 
storing very large collections of strings 
that don't change over time
● Like words in a language

● Set<string> are much more general 
purpose.
● We'll find out why in a couple weeks!



  

Next Time

● Queue
● A data structure for waiting lines.

● Password Security
● How do you properly store passwords?
● And what on earth is a hash code?
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