

Collections, Part Three

Announcements

● Two handouts online
● Assignment 2: Fun with Collections
● Section Handout

Announcements

● Section assignments finalized ~5pm
tonight.

● No class on Thursday
● No sections on Thursday. You have two

options:
● Go to the SCPD section in person
● Watch SCPD section online

Lexicon

Lexicon

● A Lexicon is a container that stores a
collection of words.

● No definitions are associated with the
words; it is a “lexicon” rather than a
“dictionary.”

● Contains operations for
● Checking whether a word exists.
● Checking whether a string is a prefix of a

given word.

Tautonyms

● A tautonym is a word formed by
repeating the same string twice.
● For example: murmur, couscous, papa, etc.

● What English words are tautonyms?

Some Aa

http://upload.wikimedia.org/wikipedia/commons/f/f1/Aa_large.jpg

http://travel.paintedstork.com/blog/image/yellow_browed_bulbul.jpg

One Bulbul

More than One Caracara

http://www.greglasley.net/images/CO/Crested-Caracara-F3.jpg

Introducing the Dikdik

tautonyms
(Pseudocode)

foreach

● You can loop the elements of any
collection class using the foreach macro:

 foreach (type var in collection) {

 /* … do something with var …
*/

 }

● foreach is not a part of standard C++;
it's a macro that we've built to keep
things simple.

tautonyms.cpp
(On Computer)

Anagrams

● Two phrases are anagrams of one
another if they have the same letters, but
in a different order.

● Examples:
● Stanford University → A Trusty Finned Visor
● Keith Schwarz → Zither Whacks
● Dawson Zhou → Whoa! Zounds!

● Question: Given an English word, can
we find all anagrams of that word?

Anagram Clusters

● An anagram cluster is a set of words
that are all anagrams of one another.

stop ↔ tops ↔ pots ↔ spot ↔ opts ↔ post

● If we want to find all anagrams of a
word, we can find its anagram cluster,
then list off all the words in that cluster.

● Two questions:
● How do we store an anagram cluster?
● How do we find the anagram cluster

associated with a given word?

Set

Set

● The Set represents an
unordered collection of
distinct elements.

● Elements can be added
and removed, and you can
check whether or not an
element exists.

Set

● The Set represents an
unordered collection of
distinct elements.

● Elements can be added
and removed, and you can
check whether or not an
element exists.

137

Set

● The Set represents an
unordered collection of
distinct elements.

● Elements can be added
and removed, and you can
check whether or not an
element exists.

137

42

Set

● The Set represents an
unordered collection of
distinct elements.

● Elements can be added
and removed, and you can
check whether or not an
element exists.

137

42
2718

Set

● The Set represents an
unordered collection of
distinct elements.

● Elements can be added
and removed, and you can
check whether or not an
element exists.

42
2718

Operations on Sets

● You can add a value to a set by writing

set += value;
● You can remove a value from a set by

writing

set -= value;

● You can check if a value exists by writing

set.contains(value)

● Many more operations available (union,
intersection, difference, subset, etc.), so
be sure to check the documentation.

Set

Set<int> numbers;

numbers += 137;

numbers += 2718;

numbers += 42;

numbers += 42;

numbers -= 42;

Set

Set<int> numbers;

numbers += 137;

numbers += 2718;

numbers += 42;

numbers += 42;

numbers -= 42;

Set

Set<int> numbers;

numbers += 137;

numbers += 2718;

numbers += 42;

numbers += 42;

numbers -= 42;

Set

Set<int> numbers;

numbers += 137;

numbers += 2718;

numbers += 42;

numbers += 42;

numbers -= 42;

Set

Set<int> numbers;

numbers += 137;

numbers += 2718;

numbers += 42;

numbers += 42;

numbers -= 42;

137

Set

Set<int> numbers;

numbers += 137;

numbers += 2718;

numbers += 42;

numbers += 42;

numbers -= 42;

137

Set

Set<int> numbers;

numbers += 137;

numbers += 2718;

numbers += 42;

numbers += 42;

numbers -= 42;

2718

137

Set

Set<int> numbers;

numbers += 137;

numbers += 2718;

numbers += 42;

numbers += 42;

numbers -= 42;

2718

137

Set

Set<int> numbers;

numbers += 137;

numbers += 2718;

numbers += 42;

numbers += 42;

numbers -= 42;
42

2718

137

Set

Set<int> numbers;

numbers += 137;

numbers += 2718;

numbers += 42;

numbers += 42;

numbers -= 42;
42

2718

137

Set

Set<int> numbers;

numbers += 137;

numbers += 2718;

numbers += 42;

numbers += 42;

numbers -= 42;
42

2718

137

42 already in numbers,
no changes.

42 already in numbers,
no changes.

Set

Set<int> numbers;

numbers += 137;

numbers += 2718;

numbers += 42;

numbers += 42;

numbers -= 42;

2718

137

42

Set

Set<int> numbers;

numbers += 137;

numbers += 2718;

numbers += 42;

numbers += 42;

numbers -= 42;

2718

137

Anagram Clusters

● We can store each anagram cluster as a
Set<string>.

● We still need a way of associating words
to anagram clusters.

Map

Map

● The Map class
represents a set of
key/value pairs.

● Each key is associated
with a unique value.

● Given a key, can look up
the associated value.

Map

● The Map class
represents a set of
key/value pairs.

● Each key is associated
with a unique value.

● Given a key, can look up
the associated value.

CS106B Awesome!

Map

● The Map class
represents a set of
key/value pairs.

● Each key is associated
with a unique value.

● Given a key, can look up
the associated value.

CS106B Awesome!

Dikdik Cute!

Map

● The Map class
represents a set of
key/value pairs.

● Each key is associated
with a unique value.

● Given a key, can look up
the associated value.

CS106B Awesome!

Dikdik Cute!

Djikstra Pathfinding

Using the Map

● You can create a map by writing

Map<KeyType, ValueType> map;

● You can add or change a key/value pair by writing

map[key] = value;

If the key doesn't already exist, it is added.

● You can read the value associated with a key by writing

map[key]

If the key doesn't exist, it is added and associated with
a default value.

● You can check whether a key exists by calling

map.containsKey(key)

Anagram Clusters

● We can use Map<string,Set<string> >
to match strings to anagram clusters
● Key: Some sort of unique identifier for each

anagram cluster
● Value: Set of words in the anagram cluster

● What should we use for the key? How
can we uniquely identify an anagram
cluster?

Sorting Letters

● One way to check whether two words are
anagrams of one another is to reorder the
letters into ascending order:

bleat → abelt

table → abelt

Idea: Build a Map<string, Set<string>> to
represent anagram clusters.

Each key is the letters of a word in sorted order.

Each value is the set of all words with those
letters.

Sorting Letters

● One way to check whether two words are
anagrams of one another is to reorder the
letters into ascending order:

bleat → abelt

table → abelt

● Idea: Build a Map<string, Set<string> > to
represent anagram clusters.
● Each key is the letters of a word in sorted order.
● Each value is the set of all words with those

letters.

Counting Sort

Counting Sort

b a n a n a

Counting Sort

b a n a n a

Map<char, int>

Counting Sort

b a n a n a

Map<char, int>

Counting Sort

b a n a n a

Map<char, int>

b 1

Counting Sort

b a n a n a

Map<char, int>

b 1

Counting Sort

b a n a n a

Map<char, int>

b 1
a 1

Counting Sort

b a n a n a

Map<char, int>

b 1
a 1

Counting Sort

b a n a n a

Map<char, int>

b 1
a 1

n 1

Counting Sort

b a n a n a

Map<char, int>

b 1
a 1

n 1

Counting Sort

b a n a n a

Map<char, int>

b 1
a 2

n 1

Counting Sort

b a n a n a

Map<char, int>

b 1
a 2

n 1

Counting Sort

b a n a n a

Map<char, int>

b 1
a 2

n 2

Counting Sort

b a n a n a

Map<char, int>

b 1
a 2

n 2

Counting Sort

b a n a n a

Map<char, int>

b 1
a 3

n 2

Ordering in foreach

● When using foreach to iterate over a
collection:
● In a Vector, string, or array, the elements

are retrieved in order.
● In a Map, the keys are returned in sorted

order.
● In a Set or Lexicon, the values are returned

in sorted order.
● In a Grid, the elements of the first row are

returned in order, then the second row, etc.
(this is called row-major order).

Counting Sort

b a n a n a

Map<char, int>

b 1
a 3

n 2

Counting Sort

b a n a n a

Map<char, int>

b 1
a 3

n 2

Counting Sort

b a n a n a

Map<char, int>

b 1
a 3

n 2
a a a

Counting Sort

b a n a n a

Map<char, int>

b 1
a 3

n 2
a a a

Counting Sort

b a n a n a

Map<char, int>

b 1
a 3

n 2
a a a b

Counting Sort

b a n a n a

Map<char, int>

b 1
a 3

n 2
a a a b

Counting Sort

b a n a n a

Map<char, int>

b 1
a 3

n 2
a a a b n n

Counting Sort

b a n a n a

Map<char, int>

b 1
a 3

n 2
a a a b n n

sort()
anagram-clusters.cpp

(On Computer)

anagram-clusters
(Pseudocode)

anagram-clusters.cpp
(Computer)

foreach

● Friends don't let friends modify a
collection when using foreach to iterate
over it's elements
● Will cause your program to crash.

Set<int> s;
s += 1; s += 2;
foreach (int i in s) {
s.remove(i); //ERROR!!!

}

Lexicon or Set<string>?

● Both the Lexicon and Set<string> can
be used to represent a collection of
strings. So which should you use?

● It turns out that the Lexicon is better for
storing very large collections of strings
that don't change over time
● Like words in a language

● Set<string> are much more general
purpose.
● We'll find out why in a couple weeks!

Next Time

● Queue
● A data structure for waiting lines.

● Password Security
● How do you properly store passwords?
● And what on earth is a hash code?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

