
  

Thinking Recursively
Part II



Announcements

● Assignment 2 due Wednesday
● Michael's OH changed this week to 3-

5PM, Monday and Tuesday in Gates 160



  

Review from Yesterday...



Recursive Problem-Solving

if (problem is sufficiently simple) {

    Directly solve the problem.

    Return the solution.

 } else {

    Split the problem up into one or more smaller
        problems with the same structure as the original.

    Solve each of those smaller problems.

    Combine the results to get the overall solution.

    Return the overall solution.

}



Solving the Towers of Hanoi



Towers of Hanoi

A B C



Towers of Hanoi

A B C

 

Move this tower...
 

Move this tower...



Towers of Hanoi

A B C

 

Move this tower...
 

Move this tower...
 

...to this spindle.
 

...to this spindle.



Towers of Hanoi

A B C

 

Move this tower...
 

Move this tower...
 

...to this spindle.
 

...to this spindle.



Towers of Hanoi

A B C



Towers of Hanoi

A B C



Towers of Hanoi

A B C



Towers of Hanoi

A B C



Solving the Towers of Hanoi
A B C

 

This disk...
 

This disk...  ...needs to get over 
here.

 ...needs to get over 
here.



Solving the Towers of Hanoi
A B C

 

This disk...
 

This disk...  ...needs to get over 
here.

 ...needs to get over 
here.



Solving the Towers of Hanoi
A B C

 

This disk...
 

This disk...  ...needs to get over 
here.

 ...needs to get over 
here.



Solving the Towers of Hanoi
A B C



Solving the Towers of Hanoi
A B C



Recursive “Leap of Faith”
A B C



Recursive “Leap of Faith”
A B C

 

Take a “leap of faith” that 
the recursive call will 

move this tower correctly.

 

Take a “leap of faith” that 
the recursive call will 

move this tower correctly.



Recursive “Leap of Faith”
A B C

 

Take a “leap of faith” that 
the recursive call will 

move this tower correctly.

 

Take a “leap of faith” that 
the recursive call will 

move this tower correctly.



Recursive “Leap of Faith”
A B C

 

Take a “leap of faith” that 
the recursive call will 

move this tower correctly.

 

Take a “leap of faith” that 
the recursive call will 

move this tower correctly.



Recursive “Leap of Faith”
A B C

 

Take a “leap of faith” that 
the recursive call will 

move this tower correctly.

 

Take a “leap of faith” that 
the recursive call will 

move this tower correctly.



Recursive “Leap of Faith”
A B C

 

Take a “leap of faith” that 
the recursive call will 

move this tower correctly.

 

Take a “leap of faith” that 
the recursive call will 

move this tower correctly.



Writing Recursive Functions

● Another way of putting this: when 
writing recursive functions it can be very 
helpful to assume that the recursive call 
will do the right thing.

● This is helpful because it's very hard to 
think through an exponential number of 
recursive calls.



  

New Stuff...



A fractal image is an image that is defined
in terms of smaller versions of itself.



Fractal Trees

● We can generate a 
fractal tree as 
follows:
● Grow in some 

direction for a 
period of time.

● Then, split and 
grow smaller trees 
outward at some 
angle.



  

Trees
(Pseudocode)



  

Trees.cpp
(Computer)



More Trees

● What if you change the amount of branching?

● What if you make the lines thicker?

● What if you allow the tree to keep growing after it 
branches?

● What if you color the branches and leaves differently?

● What if you try to space the branches apart more 
realistically?

● Stanford Dryad program uses a combination of 
recursion, machine learning, and human feedback to 
design aesthetically pleasing trees.

● Check it out at http://dryad.stanford.edu/

http://dryad.stanford.edu/


An Amazing Website

http://recursivedrawing.com/

http://recursivedrawing.com/


Exhaustive Recursion



Sensor Placement



Sensor Placement



Sensor Placement



Sensor Placement

$5

$1

$3

$2

$3

$1

$1

$8

$2

$2



Sensor Placement

● No known efficient algorithms for 
solving this problem perfectly
● Fast algorithms exist for approximately 

solving this
● Still an active area of research

● If you want the correct answer, the best 
you can do is consider all possible 
choices of sensors and return the best 
one.

● How can we generate all possible 
choices?



Subsets

● Given set S, a subset of S is a set formed 
by choosing some number of elements 
from S.
● Note: A set can only hold a single “copy” of 

an element.
– e.g The set {0, 1, 1} is identical to the set {0, 1}

● Examples:
● {0, 1, 4} is a subset of {0, 1, 2, 3, 4, 5}
● {dikdik, ibex} is a subset of {dikdik, ibex}
● { } ⊆ {a, b, c}
● { } ⊆ { }



Generating Subsets

● Many important problems in computer 
science can be solved by listing all the 
subsets of a set S and finding the “best” 
one out of every option.
● Like optimal sensor placement!



Generating Subsets

0 1 2, ,

2

1

1 2,

0

0 2,

0 1,

0 1 2, ,



Generating Subsets

0 1 2, ,

2

1

1 2,

0

0 2,

0 1,

0 1 2, ,



Generating Subsets

0 1 2, ,

2

1

1 2,

0

0 2,

0 1,

0 1 2, ,



Generating Subsets

0 1 2, ,

2

1

1 2,

0

0 2,

0 1,

0 1 2, ,



Generating Subsets

0 1 2, ,

2

1

1 2,

0

0 2,

0 1,

0 1 2, ,



Generating Subsets

0 1 2, ,

2

1

1 2,

0

0 2,

0 1,

0 1 2, ,



  

subsetsOf()
(Pseudocode)



Generating Subsets

● Base Case:
● The only subset of the empty set is the empty 

set.

● Recursive Step:
● Fix some element x of the set.
● Generate all subsets of the set formed by 

removing x from the main set.
● These subsets are subsets of the original set.
● All of the sets formed by adding x into those 

subsets are subsets of the original set.



  

subsets.cpp::subsetsOf()
(Computer)



Tracing the Recursion
Input Set Subsets Generated



Tracing the Recursion

{ A, H, I }

Input Set Subsets Generated



Tracing the Recursion

{ A, H, I }

{ H, I }

Input Set Subsets Generated



Tracing the Recursion

{ A, H, I }

{ H, I }

{ I }

Input Set Subsets Generated



Tracing the Recursion

{ A, H, I }

{ }

{ H, I }

{ I }

Input Set Subsets Generated



Tracing the Recursion

{ A, H, I }

{ }

{ H, I }

{ I }

{ }

Input Set Subsets Generated



Tracing the Recursion

{ A, H, I }

{ }

{ H, I }

{ I }

{ }

{I}, { }

Input Set Subsets Generated



Tracing the Recursion

{ A, H, I }

{ }

{ H, I }

{ I }

{ }

{I}, { }

{H, I}, {H}, {I}, { }

Input Set Subsets Generated



Tracing the Recursion

{ A, H, I }

{ }

{ H, I }

{ I }

{A, H, I}, {A, H}, {A, I}, {A}
{H, I}, {H}, {I}, { }

{ }

{I}, { }

{H, I}, {H}, {I}, { }

Input Set Subsets Generated



Analyzing Our Function

● How many subsets are there of a set with 
n elements?

● We can make a subset by choosing, for 
each element, whether to include it in 
the subset or exclude it from the subset.

● We make n choices with 2 options for 
each choice, so there are 2n possible 
subsets.

● The returned collection of sets will use at 
least 2n bytes of memory.



A Quick Calculation

● On my computer, an int is four bytes 
(4 = 22).

● My computer has about 4GB of memory 
(about 232 bytes).

● If we need 2n space to hold the return 
value, what is the largest n we can pick 
without blowing up my computer 
(again)?

● Answer: n = 30.



Reducing Memory Usage

● In many cases, we need to perform some 
operation on each subset, but don't need 
to actually store those subsets.

● Idea: Generate each subset, process it, 
and then discard it.

● Question: How do we do this?



Recursively Exploring Options

● Our recursive function needs to keep track of

● What choices we've made so far, and
● What choices we still need to make.

● Base Case:
● If there are no choices left, output the set we 

formed from the choices we made.
● Recursive Step:

● Find the next choice to make.
● For each possible choice, recursively explore 

all options formed from making that choice.



  

visitSubsets
(Pseudocode)



  

subsets.cpp::visitSubsets
(Computer)



Visualizing Subset Generation

● A very useful way of visualizing what 
happens in a recursive function is with a 
decision tree.

● Idea: Visualize the parameters and 
“choices” made in the recursion.

● Can provide valuable insights into how 
solutions are generated via recursive 
functions.



  

Subset Decision Tree
(Board)



A Decision Tree

{} {I} {H} {H, I} {A} {A, I} {A, H} {A,H,I}



A Decision Tree

A?

I?

{} {I} {H} {H, I} {A} {A, I} {A, H} {A,H,I}

I? I? I?

H? H?

Nope!                       Yep!

Nope!            

Nope!            

Nope!            Nope!            Nope!                       Yep!            Yep!            Yep!

            Yep!             Yep!Nope!            

            Yep!



A Decision Tree

A?

I?

{} {I} {H} {H, I} {A} {A, I} {A, H} {A,H,I}

I? I? I?

H? H?

Nope!                       Yep!

Nope!            

Nope!            

Nope!            Nope!            Nope!                       Yep!            Yep!            Yep!

            Yep!             Yep!Nope!            

            Yep!



A Decision Tree

A?

I?

{} {I} {H} {H, I} {A} {A, I} {A, H} {A,H,I}

I? I? I?

H? H?

Nope!                       Yep!

Nope!            

Nope!            

Nope!            Nope!            Nope!                       Yep!            Yep!            Yep!

            Yep!             Yep!Nope!            

            Yep!



Next Time

● Exhaustive Recursion II
● What other structures can we generate?
● How do we do so efficiently?

● Recursive Backtracking
● How do you find a needle in a haystack?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

