Thinking Recursively

Part 111

Announcements

« Assignment 2 Due right now
« Assignment 3: Recursion!

 Requires writing very little code

« Forces you to develop a good understanding
of recursion

« Takes a lot of time for many people, so
please start early!

 I'm frequently available outside of my
office hours in the atternoon. Email me
if you'd like to chat about the course
and/or assignments.

From Last Time...

Subsets

* Given set S, a subset of S is a set formed
by choosing some number of elements
from S.

 Note: A set can only hold a single “copy” of
an element.

- e.g The set {0, 1, 1} is identical to the set {0, 1}
« Examples:
e {0,1,4} isasubsetof {0, 1, 2, 3,4, 5}
« {dikdik, ibex} is a subset of {dikdik, ibex}
« {}C{a, b,c}
e {}C{}

Generating Subsets

« Base Case:

 The only subset of the empty set is the empty
set.

 Recursive Step:

e Fix some element x of the set.

« Generate all subsets of the set formed by
removing x from the main set.

 These subsets are subsets of the original set.

« All of the sets formed by adding x into those
subsets are subsets of the original set.

Decision Problems

It is useful to think of the process of
generating permutations as a decision
tree.

e A decision tree is a structure which models a
series of choices

Color?

Red Blu Green

Fruit? Toy? Age?

ves No on 5 M

A Decision Tree

1}

1}

1H}

1H, I}

1A}

1A, 1}

1A, H}

1A H,I}

A Decision Tree

H?

NOAW\YGF!

A?

H?

Nopti/\rep' Nope'/\rep' Nope'Nep' Nopti/\rep'

1}

{1}

1H

1H, I}

1A

1A, 1}

1A, H}

1A H,I}

A Decision Tree

A?
H? H?
Noy \Y"F’ No‘W Ne‘p!

I?

I? I? I?
Noptiy\rep! Nope!/\rep! Nope!Nep! Noptiy\rep!

1H}

A Decision Tree

A?
H? H?
NoMp! NOV \Ye‘p!
I? I? I? I?

Noptiy\rep! Nope!Nep! Nope!Nep! Noptiy\rep!

1H}

Reducing Memory Usage

 Problem: Saving every subset in a Vector
will use a ton of memory.

e Solution: In many cases, we need to
perform some operation on each subset,
but don't need to actually store those
subsets.

 Idea: Generate each subset, process it,
and then discard it.

e Question: How do we do this?

Recursively Exploring Options

 Our recursive function needs to keep
track of

« What choices we've made so far, and
« What choices we still need to make.
« Base Case:

« If there are no choices left, output the set we
formed from the choices we made.

 Recursive Step:

« Find the next choice to make.

« For each possible choice, recursively explore
all options formed from making that choice.

V1isiting Subsets
(Decision Tree)

New Stuff...

Traveling Salesperson

Let's say you're a traveling salesperson and
you have a set of cities you need to visit.

* You need to visit each city exactly once.

To do this you need to schedule a series of
flights throughout the world, where each flight
has a cost.

 Assume that there is a flight from each city
to every other city

You get to pick the order in which you visit
cities.

Goal: Construct an itinerary that minimizes
how much you spend on flights.

Traveling Salesperson

WA AT ND

AN

X &0
E' '.lllllrl
NE A 1
Ny United States
UT oo KS MO

Ch

Ok AR
kA

Gulf af
California
Gulf of

Mexico Mexco

Cuba
p
Map data G8ets Google, INEGI

Traveling Salesperson

Seattle e ; . ND
- M
= 50
D s
l"l'- = ~
w @ Salfkake ity
SF.e T _WECD KS | MO oy WY

T Mk v
det=? YL =L
@ Austin
Gulf af
California
Gulf of

Mexico Mexco

Cuba
Pueart
Map data CHebs Google, INEGH

Traveling Salesperson

s SK, ML
N
Seattl? i MO
M
kAN /'L"-.E i
e
- &0 Wi YT ME, NS
G O : A :
WY , NY ==HH
NE~-e »-New York
Sa” LgJ<§t it OH | PA
w nit les i ! CT
S Co KS | MO v N al

r
L
= DE N.
k AR ™ H,:/;]I'
[My "l.1[|
. M3 LG

w ol AL
Austin |

Gulf af
California

Cuba
Pueart
Map data CHebs Google, INEGH

Traveling Salesperson

o SK NL

Seattl? J

(]

M3 &G

w ol AL |
Austin |

Gulf af
California

Cuba
Pueart
Map data CHebs Google, INEGH

Traveling Salesperson

 No known efficient algorithms for solving this.

« MANY approximation algorithms

 Dynamic programming algorithm (beyond
the scope of this course)
« Algorithm: Consider every possible ordering of

cities and select the ordering that is the
cheapest.

Permutations

A permutation of a sequence is a
sequence with the same elements,
though possibly in a different order.

Permutations

A permutation of a sequence is a
sequence with the same elements,
though possibly in a different order.

« For example:

e E Pluribus Unum
e E Unum Pluribus
Pluribus E Unum

Pluribus Unum E

Unum E Pluribus
Unum Pluribus E

Listing all Permutations

« Like subsets, permutations are an
important structure in programming.

 Listing all permutations is useful for
answering questions like these:

« What is the best order in which to perform a
series of tasks?

« What possible DNA strands can be made by
assembling smaller fragments together?

Generating Permutations

X, XX, X,
X, XXy X,

X, X, X, X,

X, X1 X5 X,

X, X 1 X, X,

X, X 1 X, X,

Xy XX, X,
Xy X1 X, X,

Xy X, X, X,

Xy X0 X, X,

Xy X, Xy X,

Xy X, X, X,

X, X, X1 X,

X, Xi X3 X,
X, Xo X, X,

X, Xy X, X,

X, X3 X, X,

X, X, Xy X,

X, X, Xy X,

X, X, X3 X,
X, X, X, X,
X, Xy X, X,
X, Xy X, X,
X, X, X, X,
X, Xy Xy X,

Generating Permutations

X, X, X1 X,

X, X, X3 X,
X, X, X, X,
X, Xy X, X,
X, Xy X, X,
X, X, X, X,
X, Xy Xy X,

Generating Permutations

X, X, X1 X,

X, X, X3 X,
X, X, X, X,
X, Xy X, X,
X, Xy X, X,
X, X, X, X,
X, Xy Xy X,

Generating Permutations

X, X, X1 X,

X, Xy X3 X,
X, Xy X, X,

X, Xy X, X,

X, Xy X, X,

X, X, X, X,

X, X, X3 X,

Generating Permutations

X, X, X1 X,

X, X, X3 X,
X, X; X, X,

X, Xy X, X,

X, Xy X, X,

X, X, X, X,

X, X, X3 X,

Generating Permutations

Xy Xy X, X,
Xy X X, X,

Xy X, X, X,

Xy X, X, X,

Xy X, X, X,

Xy X, X, X,

X, X, X1 X,

Generating Permutations

Xy X X, X,
Xy X X, X,

Xy X, X, X,

Xy X, X, X,

Xy X, X, X,

Xy X, X, X,

X, X, X1 X,

Generating Permutations

X, X; X, X,
X, Xy X3 X,

X, X, X, X,

X, X, X5 X,

X, Xy X, X,

X, Xy X, X,

X, X, X1 X,

Generating Permutations

X, Xy X, X,
X, X X3 X,

X, X, X, X,

X, X, X5 X,

X, Xy X, X,

X, Xy X, X,

X, X, X1 X,

Generating Permutations

X, X, X1 X,

X, X, X3 X,
X, X, X, X,
X, Xy X, X,
X, Xy X, X,
X, X, X, X,
X, Xy Xy X,

Generating Permutations

X, X, X1 X,

X, X5 X,

X, X, X,

Xy X, X,

Xy X, X,

X, X, X,

X, Xy X,

Generating Permutations

X, X, X1 X,

Generating Permutations

X, X, X1 X,

Generating Permutations

X, X, X1 X,

permutations
(Pseudocode)

permutations.cpp

(Computer)

Generating Permutations

« Base Case:

 If the string is empty, there is just one
permutation - that string itself.

 Recursive Step:

 For each character in the string:

- Remove that character.
- Permute the rest of the string.
- Add that character back in.

Memory Usage... Again

« How many permutations are there of an
n-element sequence?

e Answer:n X (n-1) X ... X2 x1 = n!

« Storing all permutations of n elements
uses at least n! memory.

e Ifn=13, n! =6,227,020,800. We would
almost certainly run out of memory
trying to store all permutations of a 13-
element sequence in memory.

Reducing Memory Usage

* As before, what if we just need to
pertform some operation on each
permutation, rather than storing all of
them?

 Idea: Generate each permutation,
process it, then discard it.

Permutations Decision
Tree

(Board)

Permutations: Decision Tree

P(string soFar, string remaining)

P(“” ABC”)
/\
P(“A”, “BC) (“B”, “AC") (“C”, “AB”)

AB “C”) P(AC “B”) BA “C”) PBC A)PCA “B”) P(CB “A”)

vislitPermutations
(Pseudocode)

A Second Recursive Function

 Our recursive function needs to keep track of
e What choices we've made so far, and
« What choices we still need to make.

« Base Case:

« If there are no choices left, output the
permutation we formed from the choices made.

 Recursive Step:

e Find the next choice to make.

« For each possible choice, recursively explore all
options formed from making that choice.

visitPermutations

(Computer)

Subsets vs. Permutations

* Notice that the codes for generating
subsets and permutations are very
similar.

* The only difference is a small change in
the recursive decomposition.

« Subsets: Pick an element, recurse with and
without that element.

« Permutations: For each element, recurse
starting with that element

Some exciting news...

Most of the “interesting” exhaustive
recursive programs can be reduced to
either generating subsets or
permutations

(@) ((cé»)) @) () «g) (9))
11

S4mT22E 13 25

Maximize what's left in here.

9
_

8

() I () I () I () I () I () .(8)

14 2 13 25 30 11 9

\/ /

Maximize what's left in here.

Subsets and Permutations

« Optimizing over cell phone towers can be
thought of as generating all subsets with
the constraint and no two towers can be
adjacent.

« Similar reductions can be made for many
problems.

 Including problems in assignment 3 =)

This means if you can generate
subsets and permutations, then you
can do most of the “interesting” stuft
you can with exhaustive recursion!

A good first step to solving an
exhaustive recursive problem is first
determine if it's related to generating

subsets or permutations.

Next Time

« Exhaustive Recursion III
e One last recursive structure

 Recursive Backtracking

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

