
  

Thinking Recursively
Part IV



  

From Last Time...



  

Most of the “interesting” exhaustive 
recursive programs can be reduced to 

either generating subsets or 
permutations
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Permutations Decision Tree
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A good first step to solving an 
exhaustive recursive problem is first 
determine if it's related to generating 

subsets or permutations.



  

New Stuff...



Sensor Placement



Sensor Placement



Sensor Placement

● Goal is still to maximize covered area
● New Constraint: Can only pick k sensors

● Similar to subset example, no known 
efficient algorithms for solving this 
problem perfectly for arbitrary k

● How can we generate all possible 
choices?



Generating Combinations

● Suppose that we want to find every way to choose exactly one 
element from a set.

● We could do something like this:

foreach (int x in mySet) {

    cout << x << endl;

}



Generating Combinations

● Suppose that we want to find every way to choose exactly two 
elements from a set.

● We could do something like this:

foreach (int x in mySet) {

  foreach (int y in mySet) {

    if (x != y) {

       cout << x << ", " << y << endl;

    }

  }

}



Generating Combinations

● Suppose that we want to find every way to choose exactly three 
elements from a set.

● We could do something like this:

foreach (int x in mySet) {

  foreach (int y in mySet) {

    foreach (int z in mySet) {

      if (x != y && x != z && y != z) {

         cout << x << ", " << y << ", " << z << endl;

      }

    }

  }

}



Generating Combinations

● If we know how many elements we want 
in advance, we can always just nest a 
whole bunch of loops.

● But what if we don't know in advance?
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Pascal's Triangle Revisited
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Pascal's Triangle Revisited
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What's up 
with that?
What's up 
with that?



Generating Combinations
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Generating Combinations

One way to choose 4 
elements out of 9 is to 
choose 4 elements out 

of 8.

One way to choose 4 
elements out of 9 is to 
choose 4 elements out 

of 8.



Generating Combinations



Generating Combinations



Generating Combinations



Generating Combinations



Generating Combinations

One way to choose 4 
elements out of 9 to 

choose 3 elements out of 
8, then add one more 

element in.

One way to choose 4 
elements out of 9 to 

choose 3 elements out of 
8, then add one more 

element in.



Pascal's Triangle Revisited

1

1 1

1 12

1

1

1

1

1

1

3 3

4 46

5 105 510



Pascal's Triangle Revisited

1

1 1

1 12

1

1

1

1

1

1

3 3

4 46

5 105 510



Pascal's Triangle Revisited

1

1 1

1 12

1

1

1

1

1

1

3 3

4 46

5 105 510



Pascal's Triangle Revisited
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Generating Combinations



Generating Combinations

How many ways are there to pick 0 
things from this set?

How many ways are there to pick 0 
things from this set?



Generating Combinations

How many ways are there to pick 
100 things from this set?

How many ways are there to pick 
100 things from this set?



  

combinations
(Pseudocode)



Combinations, Recursively
● How to pick k elements from a set?

● Base Cases:
● If k is 0, the only option is to pick the empty 

set.
● Otherwise, if k is greater than the number of 

elements of the set, there are no options.
● Recursive Step:

● Pick some element x from the set.
● Find all ways of picking k elements of what 

remains.
● Find all ways of picking k – 1 elements of 

what remains, then add x back in.



  

combinations.cpp
(Computer)



Combinations

● Even though a combination is a different 
mathematical structure, generating 
combinations is nearly identical to 
generating subsets
● All we needed to add was an extra parameter 

and an extra base case.



A Little Word Puzzle



“What nine-letter word can be reduced to a 
single-letter word one letter at a time by 

removing letters, leaving it a legal word at 
each step?”



The Startling Truth

S T A R T L I N G



The Startling Truth
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The Startling Truth
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The Startling Truth
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The Startling Truth

S T I N G



The Startling Truth

S I N G



The Startling Truth

S I N



The Startling Truth

I N



The Startling Truth

I



Is there really just one nine-letter
word with this property?



Shrinkable Words

● Let's define a shrinkable word as a word that can 
be reduced down to one letter by removing one 
character at a time, leaving a word at each step.

● Base Cases:

● Any string that is not a word cannot be a 
shrinkable word.

● Any single-letter word is shrinkable.
– A, I, O

● Recursive Step:

● Any multi-letter word is shrinkable if you can 
remove a letter to form a shrinkable word.



  

shrinkable-words.cpp
(Pseudocode)



  

shrinkable-words.cpp
(Computer)



Recursive Backtracking
● The function we have just written is an 

example of recursive backtracking.
● At each step, we try one of many possible 

options.
● If any option succeeds, that's great!  

We're done.
● If none of the options succeed, then this 

particular problem can't be solved.
● In recursive backtracking we care about 

finding “one thing” instead of 
“generating all things”



Recursive Backtracking
● I claimed that most exhaustive recursive 

problems can be reduced to generating 
permutations or subsets.

● Is shrinkable words a subsets or 
permutations problem?
● Like permutations, we are computing 

an ordering: the order in which we 
remove characters.

● Instead of adding characters to a string 
we are removing characters from a 
string.
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Recursive Backtracking
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Recursive Backtracking
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Failure in Backtracking
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Sources: http://www.rubyinside.com/wp-content/uploads/2008/07/starling.jpg and 
http://2.bp.blogspot.com/-hCzVof1xqWo/TvaFXmpJAmI/AAAAAAAAIdk/QzUg1sKHDnA/s1600/1+Common_starling_in_london+paul+lomax+wiki+commons.jpg 

http://www.rubyinside.com/wp-content/uploads/2008/07/starling.jpg
http://2.bp.blogspot.com/-hCzVof1xqWo/TvaFXmpJAmI/AAAAAAAAIdk/QzUg1sKHDnA/s1600/1+Common_starling_in_london+paul+lomax+wiki+commons.jpg
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Recursive Backtracking

if (problem is sufficiently simple) {

    return whether or not the problem is solvable

} else {

    for (each choice) {

        try out that choice.

       if (that choice leads to success) {

           return success

        }        

    }

    return failure

}



Recursive Backtracking

if (problem is sufficiently simple) {

    return whether or not the problem is solvable

} else {

    for (each choice) {

        try out that choice.

       if (that choice leads to success) {

           return success

        }        

    }

    return failure

}

Note that if it succeeds, then we return 
success.  If it doesn't succeed, that 
doesn't mean we've failed – it just 
means we need to try out the next 

option.

Note that if it succeeds, then we return 
success.  If it doesn't succeed, that 
doesn't mean we've failed – it just 
means we need to try out the next 

option.



Failure in Backtracking

● Returning false in recursive backtracking 
does not mean that the entire problem is 
unsolvable!

● Instead, it just means that the current 
subproblem is unsolvable.

● Whoever made the call to this function 
can then try other options.

● Only when all options are exhausted can 
we know that the problem is unsolvable.
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Next Week

● Algorithmic Efficiency
● How can we compare the speed of two 

different algorithms?
● Sorting Algorithms
● Implementing Collections Classes
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