Thinking Recursively Part IV

From Last Time...

Most of the "interesting" exhaustive recursive programs can be reduced to either generating subsets or permutations

Subset Decision Tree

A?

Permutations Decision Tree

A good first step to solving an exhaustive recursive problem is first determine if it's related to generating subsets or permutations.

New Stuff...

Sensor Placement

Sensor Placement

Sensor Placement

- Goal is still to maximize covered area
- New Constraint: Can only pick k sensors
- Similar to subset example, no known efficient algorithms for solving this problem perfectly for arbitrary \mathbf{k}
- How can we generate all possible choices?

Generating Combinations

- Suppose that we want to find every way to choose exactly one element from a set.
- We could do something like this:

```
foreach (int x in mySet) {
```

 cout \(\ll \mathrm{x} \ll\) endl;
 \}

Generating Combinations

- Suppose that we want to find every way to choose exactly two elements from a set.
- We could do something like this:

```
foreach (int x in mySet) {
    foreach (int y in mySet) {
        if (x != y) {
        cout << x << ", " << y << endl;
        }
    }
}
```


- Suppose that we want to find every way to choose exactly three elements from a set.
- We could do something like this:

```
foreach (int x in mySet) {
    foreach (int y in mySet) {
        foreach (int z in mySet) {
        if (x != Y && x != z && y != z) {
        cout << x << ", " << Y << ", " << Z << endl;
    }
    }
    }
}
```


Generating Combinations

- If we know how many elements we want in advance, we can always just nest a whole bunch of loops.
- But what if we don't know in advance?

Pascal's Triangle Revisited

$$
\begin{aligned}
& 1 \\
& 11 \\
& 121 \\
& \begin{array}{llll}
1 & 3 & 3 & 1
\end{array} \\
& \begin{array}{lllll}
1 & 4 & 6 & 4 & 1
\end{array} \\
& \begin{array}{llllll}
1 & 5 & 10 & 10 & 5 & 1
\end{array}
\end{aligned}
$$

Pascal's Triangle Revisited

$$
\begin{aligned}
& 1 \\
& 11 \\
& 121 \\
& \begin{array}{llll}
1 & 3 & 3 & 1
\end{array} \\
& \begin{array}{lllll}
1 & 4 & 6 & 4 & 1
\end{array} \\
& \begin{array}{llllll}
1 & 5 & 10 & 10 & 5 & 1
\end{array}
\end{aligned}
$$

Pascal's Triangle Revisited

$$
\begin{aligned}
& 1 \\
& 11 \\
& 121 \\
& \begin{array}{llll}
1 & 3 & 3 & 1
\end{array} \\
& \begin{array}{lllll}
1 & 4 & 6 & 4 & 1
\end{array} \\
& \begin{array}{llllll}
1 & 5 & 10 & 10 & 5 & 1
\end{array}
\end{aligned}
$$

Pascal's Triangle Revisited

$$
\begin{gathered}
(0,0) \\
(0,1)(1,1) \\
(0,2)(1,2)(2,2) \\
(0,3)(1,3)(2,3)(3,3) \\
(0,4)(1,4)(2,4)(3,4)(4,4) \\
(0,5)(1,5)(2,5)(3,5)(4,5)(5,5)
\end{gathered}
$$

Pascal's Triangle Revisited

$(0,0)$

$$
\begin{gathered}
(0,1)(1,1) \\
(0,2)(1,2)(2,2) \\
(0,3)(1,3)(2,3)(3,3) \\
(0,4)(1,4)(2,4)(3,4)(4,4) \\
(0,5)(1,5)(2,5)(3,5)(4,5)(5,5)
\end{gathered}
$$

Generating Combinations

Generating Combinations

Generating Combinations

Generating Combinations

Generating Combinations

Generating Combinations

Generating Combinations

Generating Combinations

Generating Combinations

Generating Combinations

Generating Combinations

Generating Combinations

Pascal's Triangle Revisited

$$
\begin{aligned}
& 1 \\
& 11 \\
& 121 \\
& \begin{array}{llll}
1 & 3 & 3 & 1
\end{array} \\
& \begin{array}{lllll}
1 & 4 & 6 & 4 & 1
\end{array} \\
& \begin{array}{llllll}
1 & 5 & 10 & 10 & 5 & 1
\end{array}
\end{aligned}
$$

Pascal's Triangle Revisited

$$
\begin{aligned}
& 1 \\
& 11 \\
& 121 \\
& \begin{array}{llll}
1 & 3 & 3 & 1
\end{array} \\
& \begin{array}{lllll}
1 & 4 & 6 & 4 & 1
\end{array} \\
& \begin{array}{llllll}
1 & 5 & 10 & 10 & 5 & 1
\end{array}
\end{aligned}
$$

Pascal's Triangle Revisited

$$
\begin{aligned}
& 1 \\
& 11 \\
& 121 \\
& \begin{array}{llll}
1 & 3 & 3 & 1
\end{array} \\
& \begin{array}{lllll}
1 & 4 & 6 & 4 & 1
\end{array} \\
& \begin{array}{llllll}
1 & 5 & 10 & 10 & 5 & 1
\end{array}
\end{aligned}
$$

Pascal's Triangle Revisited

$$
\begin{gathered}
(0,0) \\
(0,1)(1,1) \\
(0,2)(1,2)(2,2) \\
(0,3)(1,3)(2,3)(3,3) \\
(0,4)(1,4)(2,4)(3,4)(4,4) \\
(0,5)(1,5)(2,5)(3,5)(4,5)(5,5)
\end{gathered}
$$

Generating Combinations

Generating Combinations

How many ways are there to pick 0 things from this set?

Generating Combinations

How many ways are there to pick 100 things from this set?

combinations (Pseudocode)

Combinations, Recursively

- How to pick k elements from a set?
- Base Cases:
- If k is 0 , the only option is to pick the empty set.
- Otherwise, if k is greater than the number of elements of the set, there are no options.
- Recursive Step:
- Pick some element x from the set.
- Find all ways of picking k elements of what remains.
- Find all ways of picking $k-1$ elements of what remains, then add x back in.

combinations.cpp (Computer)

Combinations

- Even though a combination is a different mathematical structure, generating combinations is nearly identical to generating subsets
- All we needed to add was an extra parameter and an extra base case.

A Little Word Puzzle

"What nine-letter word can be reduced to a single-letter word one letter at a time by removing letters, leaving it a legal word at each step?"

The Startling Truth

S TARTLING

The Startling Truth

STARTING

The Startling Truth

STARING

The Startling Truth

S TRING

The Startling Truth

S T I NG

The Startling Truth

S I NG

The Startling Truth

S I N

The Startling Truth

I N

The Startling Truth

Is there really just one nine-letter word with this property?

Shrinkapen Words

- Let's define a shrinkable word as a word that can be reduced down to one letter by removing one character at a time, leaving a word at each step.
- Base Cases:
- Any string that is not a word cannot be a shrinkable word.
- Any single-letter word is shrinkable.
- A, I, O
- Recursive Step:
- Any multi-letter word is shrinkable if you can remove a letter to form a shrinkable word.

shrinkable-words.cpp (Pseudocode)

shrinkable-words.cpp (Computer)

Recursive Backtracking

- The function we have just written is an example of recursive backtracking.
- At each step, we try one of many possible options.
- If any option succeeds, that's great! We're done.
- If none of the options succeed, then this particular problem can't be solved.
- In recursive backtracking we care about finding "one thing" instead of "generating all things"

Recursive Backtracking

- I claimed that most exhaustive recursive problems can be reduced to generating permutations or subsets.
- Is shrinkable words a subsets or permutations problem?
- Like permutations, we are computing an ordering: the order in which we remove characters.
- Instead of adding characters to a string we are removing characters from a string.

Decision Tree

Decision Tree

Recursive Backtracking

Recursive Backtracking

Recursive Backtracking

CART

Recursive Backtracking

Failure in Backtracking

STARTLING

Failure in Backtracking

STARTLING

TARTLING

Failure in Backtracking

STARTLING

TARTLING

Failure in Backtracking

STARTLING

Failure in Backtracking

STARTLING

SARTLING

Failure in Backtracking

STARTLING

SARTLING

Failure in Backtracking

STARTLING

Failure in Backtracking

STARTLING

STRTLING

Failure in Backtracking

STARTLING

STRTLING

Failure in Backtracking

STARTLING

Failure in Backtracking

STARTLING

STATLING

Failure in Backtracking

STARTLING

STATLING

Failure in Backtracking

STARTLING

Failure in Backtracking

STARTLING

STARLING

Failure in Backtracking

STARTLING

STARLING

Failure in Backtracking

STARTLING

S TARLING

TARLING

Failure in Backtracking

STARTLING

S T A R L I NG

Failure in Backtracking

STARTLING

STARLING

Failure in Backtracking

STARTLING

S TARLING

SARLING

Failure in Backtracking

STARTLING

S TARLING

Recursive Backtracking

if (problem is sufficiently simple)
return whether or not the problem is solvable
\} else \{
for (each choice) \{
try out that choice.
if (that choice leads to success) \{
return success
\}
\}
return failure

Recursive Backtracking

if (problem is sufficiently simple)
return whether or not the problem is solvable
\} else \{
for (each choice) \{
try out that choice.
if (that choice leads to success)
return succes
\}
\}
return failure
Note that if it succeeds, then we return success. If it doesn't succeed, that doesn't mean we've failed - it just means we need to try out the next option.

Failure in Backtracking

- Returning false in recursive backtracking does not mean that the entire problem is unsolvable!
- Instead, it just means that the current subproblem is unsolvable.
- Whoever made the call to this function can then try other options.
- Only when all options are exhausted can we know that the problem is unsolvable.

Ur Doin It Rong!

Next Week

- Algorithmic Efficiency
- How can we compare the speed of two different algorithms?
- Sorting Algorithms
- Implementing Collections Classes

