

Thinking Recursively
Part IV

From Last Time...

Most of the “interesting” exhaustive
recursive programs can be reduced to

either generating subsets or
permutations

Subset Decision Tree

A?

I?

{} {I} {H} {H, I} {A} {A, I} {A, H} {A,H,I}

I? I? I?

H? H?

Nope! Yep!

Nope!

Nope!

Nope! Nope! Nope! Yep! Yep! Yep!

 Yep! Yep!Nope!

 Yep!

Permutations Decision Tree

AHI

HI AI AH

I H I A H A

AHI AIH HAI HIA IAH IHA

A I

 H

H I A I A H

I H I A H A

A good first step to solving an
exhaustive recursive problem is first
determine if it's related to generating

subsets or permutations.

New Stuff...

Sensor Placement

Sensor Placement

Sensor Placement

● Goal is still to maximize covered area
● New Constraint: Can only pick k sensors

● Similar to subset example, no known
efficient algorithms for solving this
problem perfectly for arbitrary k

● How can we generate all possible
choices?

Generating Combinations

● Suppose that we want to find every way to choose exactly one
element from a set.

● We could do something like this:

foreach (int x in mySet) {

 cout << x << endl;

}

Generating Combinations

● Suppose that we want to find every way to choose exactly two
elements from a set.

● We could do something like this:

foreach (int x in mySet) {

 foreach (int y in mySet) {

 if (x != y) {

 cout << x << ", " << y << endl;

 }

 }

}

Generating Combinations

● Suppose that we want to find every way to choose exactly three
elements from a set.

● We could do something like this:

foreach (int x in mySet) {

 foreach (int y in mySet) {

 foreach (int z in mySet) {

 if (x != y && x != z && y != z) {

 cout << x << ", " << y << ", " << z << endl;

 }

 }

 }

}

Generating Combinations

● If we know how many elements we want
in advance, we can always just nest a
whole bunch of loops.

● But what if we don't know in advance?

Pascal's Triangle Revisited

1

1 1

1 12

1

1

1

1

1

1

3 3

4 46

5 105 510

Pascal's Triangle Revisited

1

1 1

1 12

1

1

1

1

1

1

3 3

4 46

5 105 510

Pascal's Triangle Revisited

1

1 1

1 12

1

1

1

1

1

1

3 3

4 46

5 105 510

Pascal's Triangle Revisited

(0, 0)

(0, 1) (1, 1)

(0, 2) (2, 2)(1, 2)

(0, 3)

(0, 4)

(0, 5)

(3, 3)

(4, 4)

(5, 5)

(1, 3) (2, 3)

(1, 4) (3, 4)(2, 4)

(1, 5) (2, 5) (4, 5)(3, 5)

Pascal's Triangle Revisited

(0, 0)

(0, 1) (1, 1)

(0, 2) (2, 2)(1, 2)

(0, 3)

(0, 4)

(0, 5)

(3, 3)

(4, 4)

(5, 5)

(1, 3) (2, 3)

(1, 4) (3, 4)(2, 4)

(1, 5) (2, 5) (4, 5)(3, 5)

What's up
with that?
What's up
with that?

Generating Combinations

Generating Combinations

Generating Combinations

Generating Combinations

Generating Combinations

Generating Combinations

Generating Combinations

One way to choose 4
elements out of 9 is to
choose 4 elements out

of 8.

One way to choose 4
elements out of 9 is to
choose 4 elements out

of 8.

Generating Combinations

Generating Combinations

Generating Combinations

Generating Combinations

Generating Combinations

One way to choose 4
elements out of 9 to

choose 3 elements out of
8, then add one more

element in.

One way to choose 4
elements out of 9 to

choose 3 elements out of
8, then add one more

element in.

Pascal's Triangle Revisited

1

1 1

1 12

1

1

1

1

1

1

3 3

4 46

5 105 510

Pascal's Triangle Revisited

1

1 1

1 12

1

1

1

1

1

1

3 3

4 46

5 105 510

Pascal's Triangle Revisited

1

1 1

1 12

1

1

1

1

1

1

3 3

4 46

5 105 510

Pascal's Triangle Revisited

(0, 0)

(0, 1) (1, 1)

(0, 2) (2, 2)(1, 2)

(0, 3)

(0, 4)

(0, 5)

(3, 3)

(4, 4)

(5, 5)

(1, 3) (2, 3)

(1, 4) (3, 4)(2, 4)

(1, 5) (2, 5) (4, 5)(3, 5)

Generating Combinations

Generating Combinations

How many ways are there to pick 0
things from this set?

How many ways are there to pick 0
things from this set?

Generating Combinations

How many ways are there to pick
100 things from this set?

How many ways are there to pick
100 things from this set?

combinations
(Pseudocode)

Combinations, Recursively
● How to pick k elements from a set?

● Base Cases:
● If k is 0, the only option is to pick the empty

set.
● Otherwise, if k is greater than the number of

elements of the set, there are no options.
● Recursive Step:

● Pick some element x from the set.
● Find all ways of picking k elements of what

remains.
● Find all ways of picking k – 1 elements of

what remains, then add x back in.

combinations.cpp
(Computer)

Combinations

● Even though a combination is a different
mathematical structure, generating
combinations is nearly identical to
generating subsets
● All we needed to add was an extra parameter

and an extra base case.

A Little Word Puzzle

“What nine-letter word can be reduced to a
single-letter word one letter at a time by

removing letters, leaving it a legal word at
each step?”

The Startling Truth

S T A R T L I N G

The Startling Truth

S T A R T I N G

The Startling Truth

S T A R I N G

The Startling Truth

S T R I N G

The Startling Truth

S T I N G

The Startling Truth

S I N G

The Startling Truth

S I N

The Startling Truth

I N

The Startling Truth

I

Is there really just one nine-letter
word with this property?

Shrinkable Words

● Let's define a shrinkable word as a word that can
be reduced down to one letter by removing one
character at a time, leaving a word at each step.

● Base Cases:

● Any string that is not a word cannot be a
shrinkable word.

● Any single-letter word is shrinkable.
– A, I, O

● Recursive Step:

● Any multi-letter word is shrinkable if you can
remove a letter to form a shrinkable word.

shrinkable-words.cpp
(Pseudocode)

shrinkable-words.cpp
(Computer)

Recursive Backtracking
● The function we have just written is an

example of recursive backtracking.
● At each step, we try one of many possible

options.
● If any option succeeds, that's great!

We're done.
● If none of the options succeed, then this

particular problem can't be solved.
● In recursive backtracking we care about

finding “one thing” instead of
“generating all things”

Recursive Backtracking
● I claimed that most exhaustive recursive

problems can be reduced to generating
permutations or subsets.

● Is shrinkable words a subsets or
permutations problem?
● Like permutations, we are computing

an ordering: the order in which we
remove characters.

● Instead of adding characters to a string
we are removing characters from a
string.

Decision Tree

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Decision Tree

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Recursive Backtracking

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Recursive Backtracking

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Recursive Backtracking

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Recursive Backtracking

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Recursive Backtracking

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Recursive Backtracking

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Recursive Backtracking

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Recursive Backtracking

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Recursive Backtracking

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Recursive Backtracking

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Recursive Backtracking

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Recursive Backtracking

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Failure in Backtracking

S T A R T L I N G

Failure in Backtracking

S T A R T L I N G

T A R T L I N G

Failure in Backtracking

S T A R T L I N G

T A R T L I N G

Failure in Backtracking

S T A R T L I N G

Failure in Backtracking

S T A R T L I N G

S A R T L I N G

Failure in Backtracking

S T A R T L I N G

S A R T L I N G

Failure in Backtracking

S T A R T L I N G

Failure in Backtracking

S T A R T L I N G

S T R T L I N G

Failure in Backtracking

S T A R T L I N G

S T R T L I N G

Failure in Backtracking

S T A R T L I N G

Failure in Backtracking

S T A R T L I N G

S T A T L I N G

Failure in Backtracking

S T A R T L I N G

S T A T L I N G

Failure in Backtracking

S T A R T L I N G

Failure in Backtracking

S T A R T L I N G

S T A R L I N G

Failure in Backtracking

S T A R T L I N G

S T A R L I N G

Sources: http://www.rubyinside.com/wp-content/uploads/2008/07/starling.jpg and
http://2.bp.blogspot.com/-hCzVof1xqWo/TvaFXmpJAmI/AAAAAAAAIdk/QzUg1sKHDnA/s1600/1+Common_starling_in_london+paul+lomax+wiki+commons.jpg

http://www.rubyinside.com/wp-content/uploads/2008/07/starling.jpg
http://2.bp.blogspot.com/-hCzVof1xqWo/TvaFXmpJAmI/AAAAAAAAIdk/QzUg1sKHDnA/s1600/1+Common_starling_in_london+paul+lomax+wiki+commons.jpg

Failure in Backtracking

S T A R T L I N G

S T A R L I N G

T A R L I N G

Failure in Backtracking

S T A R T L I N G

S T A R L I N G

T A R L I N G

Failure in Backtracking

S T A R T L I N G

S T A R L I N G

Failure in Backtracking

S T A R T L I N G

S T A R L I N G

S A R L I N G

Failure in Backtracking

S T A R T L I N G

S T A R L I N G

S A R L I N G

Recursive Backtracking

if (problem is sufficiently simple) {

 return whether or not the problem is solvable

} else {

 for (each choice) {

 try out that choice.

 if (that choice leads to success) {

 return success

 }

 }

 return failure

}

Recursive Backtracking

if (problem is sufficiently simple) {

 return whether or not the problem is solvable

} else {

 for (each choice) {

 try out that choice.

 if (that choice leads to success) {

 return success

 }

 }

 return failure

}

Note that if it succeeds, then we return
success. If it doesn't succeed, that
doesn't mean we've failed – it just
means we need to try out the next

option.

Note that if it succeeds, then we return
success. If it doesn't succeed, that
doesn't mean we've failed – it just
means we need to try out the next

option.

Failure in Backtracking

● Returning false in recursive backtracking
does not mean that the entire problem is
unsolvable!

● Instead, it just means that the current
subproblem is unsolvable.

● Whoever made the call to this function
can then try other options.

● Only when all options are exhausted can
we know that the problem is unsolvable.

Ur Doin It Rong!

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Ur Doin It Rong!

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Ur Doin It Rong!

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Ur Doin It Rong!

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Ur Doin It Rong!

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Ur Doin It Rong!

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Ur Doin It Rong!

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Ur Doin It Rong!

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Next Week

● Algorithmic Efficiency
● How can we compare the speed of two

different algorithms?
● Sorting Algorithms
● Implementing Collections Classes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105

