
 1

Algorithmic Analysis and Sorting
Part One

 2

Announcements

● Solutions to warm-up recursion problems
have been posted.

● Midterm is next Monday, July 22 from
7PM – 10PM.
● Cubberly Auditorium.
● Please email Michael and I ASAP if you have

a conflict with the exam time.
● Please email Michael and I in the next

couple of days if you need special
accomodations.

 3

Midterm

● Close book, close note, close laptop
● No phones or MP3 Players

● Super lame, but it's been an issue in the past
 =(

● If you find the noise of 120 scribbling on
paper distracting, then I recommend
wearing earplugs

● If you need to be able to check your phone
(e.g. you're an on-call Doctor) then please let
me know

● Covers material through this Wednesday

 4

Midterm

● Reference sheet will be provided at the exam

● Will be posted on the website later today.
● If you think something is missing that should be

there, then please let me know!
● Practice Exam will be posted later today

● Please do not look at past midterms!

● We don't intentionally reuse problems.
● If you happen to look at a previous midterm by

mistake:

– Don't worry, you're not in trouble, but please let
me know just so I can make sure everyone in the
class has access to it. I just want things to be
fair.

 5

Studying for the Midterm

● Exam tests your understanding of data structures,
recursion and algorithmic analysis (this week)

● Studying in CS106B involves:

● Section handout
● Practice midterm
● Problems in class and lecture slides
● Reading course reader

● Reading solutions is probably not sufficient!

● Study skills handout will be on the website later
today. Please read this!

● Do problems by hand, not on your computer!

 6

What May be on the Midterm

● Data structures:

● Ability to use them to solve problems
● Pros and cons of using different data structures

● Recursion:

● Tower of Hanoi
● “Divide-and-Conquer” (Random Parking)
● Exhaustive (Subsets,Permutations)
● Recursive Backtracking (Shrinkable Words)

● Simple Algorithmic Analysis (Big-O)

 7

What May be on the Midterm

● Mostly coding questions
● Maybe some short answer questions
● Maybe generate a decision tree
● Maybe read some code and tell me what

it does

 8

What's not on the Midterm

● Name-the-function-call

● “What's the Stanford C++ method for
getting an integer from the user?”

● Specific Algorithms
● “Implement Shaunting-Yard from memory”

 9

Everything in this class can be
understood by anyone through hard
work and effective study techniques.

If you would like help studying, please
let me know.

 10

Memoization

 11

14 22 13 25 30 11 9

14 22 13 25 30 11 9

Maximize what's left in here.

Maximize what's left in here.

 12

Counting Recursive Calls

● Let n be the number of cities.
● Let C(n) be the number of function calls

made.
● If n = 0, there is just one call, so C(0) = 1.
● If n = 1, there is just one call, so C(1) = 1.
● If n ≥ 2, we have the initial function call,

plus the two recursive calls. So
C(n) = 1 + C(n – 1) + C(n – 2).

 13

Counting Recursive Calls
● C(0) = C(1) = 1.
● C(n) = 1 + C(n – 1) + C(n – 2)
● This gives the series

1, 1, 3, 5, 9, 15, 25, 41, 67, 109, 177,
287, 465, 753, 1219, 1973, 3193, 5167,

…
● This function grows very quickly, so our

solution will scale very poorly.
● Neat mathematical aside – these

numbers are called the Leonardo
numbers.

 14

The Call Tree

1, 2, 3, 4

2, 3, 4

3, 4

4

4

3, 4

4

 15

The Call Tree

1, 2, 3, 4

2, 3, 4

3, 4

4

4

3, 4

4

 16

The Call Tree

1, 2, 3, 4

2, 3, 4

3, 4

4

4

3, 4

4

 17

The Call Tree

1, 2, 3, 4

2, 3, 4

3, 4

4

4

3, 4

4

 18

The Call Tree

1, 2, 3, 4

2, 3, 4

3, 4

4

4

3, 4

4

 19

The Call Tree

1, 2, 3, 4

2, 3, 4

3, 4

4

4

3, 4

4

 20

A Bigger Call Tree

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

 21

A Bigger Call Tree

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

 22

A Bigger Call Tree

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

 23

A Bigger Call Tree

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

 24

A Bigger Call Tree

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

 25

We're doing completely unnecessary work!
Can we do better?

 26

Cell Towers Revisited
(cell-towers.cpp)

 27

What Just Happened?

● Remember what values we've
computed so far.

● New base case: If we already computed
the answer, we're done.

● When computing a recursive step, record
the answer before we return it.

● This is called memoization.
● No, that is not a typo – there's no “r” in

memoization.

 28

Memoization

● Memoization can be useful if you make
redundant recursive calls and you don't
need to explicitly explore every possible
subset/permutation
● Why wouldn't memoization help in

generating permutations/subsets?

 29

Original Call Tree

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

 30

Memoized Call Tree

5

4

3

2

1 0

1

2

3

 31

Introduction to Algorithmic
Analysis

 32

Fundamental Question:

How can we compare solutions to
problems?

 33

One Idea: Runtime

 34

Why Runtime Isn't a Good Measure

● Fluctuates based on size of input
● Sorting 210 integers vs 230 integers

● Fluctuates based on computer
● Sorting integers on a Department of Energy

supercomputer vs a personal laptop

● Fluctuates based on difficulty of input
● Sorting 100 integers that are randomly

permuted vs 100 integers that are almost in
sorted order

 35

A Better Measure

● Instead of measuring the time it takes for
an algorithm to run, measure the amount
of “work” it does.
● Work: Any sort of operation the computer

performs (eg. addition, multiplication,
checking the condition of an if statement)

● Using this as a goal, let's develop a
measure that addresses the concerns we
outlined earlier

 36

Why Runtime Isn't a Good Measure

● Problem: Fluctuates based on size of
input
● Solution: Let the amount of “work” be

a function of the size of its input.

 37

double average(Vector<int>& vec) {
double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

return total / vec.size();
}

 38

double average(Vector<int>& vec) {
double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

return total / vec.size();
}

● Let:n = vec.size()

 39

double average(Vector<int>& vec) {
double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

return total / vec.size();
}

● Let:n = vec.size()
k
0

= work done in each iteration of the for loop

 40

double average(Vector<int>& vec) {
double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

return total / vec.size();
}

● Let:n = vec.size()
k
0

= work done in each iteration of the for loop

 41

double average(Vector<int>& vec) {
double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

return total / vec.size();
}

● Let:n = vec.size()
k
0

= work done in each iteration of the for loop

k
1

= any other work done in the function (eg:
 returning a value, initializing i to 0)

 42

double average(Vector<int>& vec) {
double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

return total / vec.size();
}

● Let:n = vec.size()
k
0

= work done in each iteration of the for loop

k
1

= any other work done in the function (eg:
 returning a value, initializing i to 0)

 43

double average(Vector<int>& vec) {
double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

return total / vec.size();
}

● Let:n = vec.size()
k
0

= work done in each iteration of the for loop

k
1

= any other work done in the function (eg:
 returning a value, initializing i to 0)

● Work = k
0
n + k

1

 44

double average(Vector<int>& vec) {
double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

return total / vec.size();
}

● Let:n = vec.size()
k
0

= work done in each iteration of the for loop

k
1

= any other work done in the function (eg:
 returning a value, initializing i to 0)

● Work = k
0
n + k

1

● k
0
n: component of work done that's dependent

upon the length of vec
● k

1
: component of work done that's independent

of the length of vec

● k
0
n: component of work done that's dependent

upon the length of vec
● k

1
: component of work done that's independent

of the length of vec

 45

Why Runtime Isn't a Good Measure

● Work = k
0
n + k

1

● How important is the “+ k
1
”?

● As n becomes large, “k0n + k1” is
dominated by the “k

0
n” term, so we can

drop the “+ k
1
” and still have a good

sense of how much work the algorithm
does

– Work = k0n

 46

● Work = k
0
n

● How important is the “k
0
”?

● “k
0
” is a function of how fast a computer can

perform basic operations (add, multiply,
divide, check boolean value, etc)

– “k
0
” is going to vary from computer to

computer
● Because “k

0
” only tells us something about

the computer the algorithm is run on, we
choose to drop it.

● Work = n

Why Runtime Isn't a Good Measure

 47

Big-Observations

● Don't need to explicitly compute these
constants.
● Whether runtime is 4n + 10 or 100n + 137,

runtime is still proportional to input size.
● Can just plot the runtime to obtain actual

values.

● Only the dominant term matters.
● For both 4n + 1000 and n + 137, for very

large n most of the runtime is explained by
n.

● Is there a concise way of describing this?

 48

Big-Observations

 49

Big-ObservationsNotation

● Ignore everything except the dominant
growth term, including constant factors.

● Examples:
● 4n + 4 = O(n)
● 137n + 271 = O(n)
● n2 + 1000n + 100000 = O(n2)
● 2n + n3 = O(2n)

 50

Algorithmic Analysis with Big-O

 51

Algorithmic Analysis with Big-O

double average(Vector<int>& vec) {
double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

return total / vec.size();
}

 52

Algorithmic Analysis with Big-O

double average(Vector<int>& vec) {
double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

return total / vec.size();
}

 53

Algorithmic Analysis with Big-O

double average(Vector<int>& vec) {
double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

return total / vec.size();
}

O(n)

 54

A More Interesting Example

 55

A More Interesting Example

bool linearSearch(string& str, char ch) {
for (int i = 0; i < str.length(); i++) {

if (str[i] == ch) {
return true;

 }
 }

return false;
}

 56

A More Interesting Example

bool linearSearch(string& str, char ch) {
for (int i = 0; i < str.length(); i++) {

if (str[i] == ch) {
return true;

 }
 }

return false;
}

 57

A More Interesting Example

bool linearSearch(string& str, char ch) {
for (int i = 0; i < str.length(); i++) {

if (str[i] == ch) {
return true;

 }
 }

return false;
}

How do we analyze this?

 58

A More Interesting Example
● Say we are performing a linear search

for the character 'a' in these two strings:
● “this is my viola”
● “actually, that isn't”

● This comes back to one of our original
concerns with simply measuring runtime
● Problem: Runtime fluctuates based on

difficulty of input
● Solution: Make some sort of

assumption of the difficulty of the input

 59

Types of Analysis

● Worst-Case Analysis
● What's the worst possible runtime for the algorithm?
● Useful for "sleeping well at night."

● Best-Case Analysis
● What's the best possible runtime for the algorithm?
● Useful to see if the algorithm performs well in some

cases.

● Average-Case Analysis
● What's the average runtime for the algorithm?
● Far beyond the scope of this class; take CS109,

CS161, CS365, or CS369N for more information!

 60

Types of Analysis

● Worst-Case Analysis
● What's the worst possible runtime for the algorithm?
● Useful for "sleeping well at night."

Best-Case Analysis

What's the best possible runtime for the algorithm?

Useful to see if the algorithm performs well in some
cases.

Average-Case Analysis

What's the average runtime for the algorithm?

Far beyond the scope of this class; take CS109,
CS161, CS365, or CS369N for more information!

 61

Worst Case Analysis
bool LinearSearch(string& str, char ch) {

for (int i = 0; i < str.length(); i++)
if (str[i] == ch)

return true;

return false;
}

O(n)

● Assume that “ch” is the worst possible
location for this algorithm
● In this case, “ch” is not in str

 62

Determining if a Character is a Letter

 63

Determining if a Character is a Letter

bool isAlpha(char ch) {
 return (ch >= 'A' && ch <= 'Z') ||
 (ch >= 'a' && ch <= 'z');
}

 64

Determining if a Character is a Letter

bool isAlpha(char ch) {
 return (ch >= 'A' && ch <= 'Z') ||
 (ch >= 'a' && ch <= 'z');
}

O(1)

 65

What Can Big-O Tell Us?

● Long-term behavior of a function.
● If algorithm A is O(n) and algorithm B is

O(n2), for large inputs algorithm A will
always be faster.

● If algorithm A is O(n), for large inputs,
doubling the size of the input roughly
doubles the runtime.
– In other words, Big-O tells us how the running

time of an algorithm grows as the size of its input
grows

What “large” means on the terms we
dropped!

What “large” means on the terms we
dropped!

 66

What Can't Big-O Tell Us?

● The actual runtime of a function.
● 10100n = O(n)
● 10-100n = O(n)

● How a function behaves on small inputs.
● n3 = O(n3)
● 106 = O(1)

 670

2

4

6

8

10

12

14

16

Growth Rates, Part One

O(1)
O(log n)
O(n)

 680

50

100

150

200

250

Growth Rates, Part Two

O(n)
O(n log n)
O(n^2)

 690

1000

2000

3000

4000

5000

6000

7000

8000

9000

Growth Rates, Part Three

O(n^2)
O(n^3)
O(2^n)

 700

1000

2000

3000

4000

5000

6000

7000

8000

9000

To Give You A Better Sense...

O(1)
O(log n)
O(n)
O(n log n)
O(n^2)
O(n^3)
O(2^n)

 711

10

100

1000

10000

Once More with Logarithms

O(1)
O(log n)
O(n)
O(n log n)
O(n^2)
O(n^3)
O(2^n)

 72

Size 1 lg n n n log n n2 n3 2n

100 1μs 7μs 100μs 0.7ms 10ms <1min 40 quadrillion yrs

200 1μs 8μs 200μs 1.5ms 40ms <1min Just... wow.

300 1μs 8μs 300μs 2.5ms 90ms 1min

400 1μs 9μs 400μs 3.5ms 160ms 2min

500 1μs 9μs 500μs 4.5ms 250ms 4min

600 1μs 9μs 600μs 5.5ms 360ms 6min

700 1μs 9μs 700μs 6.6ms 490ms 9min

800 1μs 10μs 800μs 7.7ms 640ms 12min

900 1μs 10μs 900μs 8.8ms 810ms 17min

1000 1μs 10μs 1000μs 10ms 1000ms 22min

1100 1μs 10μs 1100μs 11ms 1200ms 29min

1200 1μs 10μs 1200μs 12ms 1400ms 37min

1300 1μs 10μs 1300μs 13ms 1700ms 45min

1400 1μs 10μs 1400μs 15ms 2000ms 56min

Comparison of Runtimes
(1 operation = 1 microsecond)

 73

Summary of Big-O

● A means of describing the growth rate of
a function.

● Ignores all but the leading term.
● Ignores constants.
● Allows for quantitative ranking of

algorithms.
● Allows for quantiative reasoning about

algorithms.

 74

Sorting Algorithms

 75

The Sorting Problem

● Given a list of elements, sort those
elements in ascending order.

● There are many ways to solve this
problem.

● What is the best way to solve this
problem?

● We'll use big-O to find out!

 76

The Sorting Problem

● Sorting is extremely important in
Computer Science.
● Searching through sorted data is much

faster than searching through unsorted data
due to Binary Search
– It's okay if you haven't heard of Binary Search

before, we'll cover it soon.
● Many data structures in Computer Science

are simply fancy ways of storing data in
sorted order

 77

The Sorting Problem

● Graphics: “Which objects can you see in
a scene?”

● Scientific Simulation: “What particles are
close enough to each other to exert some
sort of force?”

● Machine Learning: “What training
instance is this test instance most similar
to?”

 78

An Initial Idea: Selection Sort

 79

An Initial Idea: Selection Sort

721 64

 80

An Initial Idea: Selection Sort

721 64

 81

An Initial Idea: Selection Sort

721 64

 82

An Initial Idea: Selection Sort

72 641

 83

An Initial Idea: Selection Sort

72 641

 84

An Initial Idea: Selection Sort

72 641

 85

An Initial Idea: Selection Sort

72 641

 86

An Initial Idea: Selection Sort

72 641

 87

An Initial Idea: Selection Sort

72 641

 88

An Initial Idea: Selection Sort

7 641 2

 89

An Initial Idea: Selection Sort

7 641 2

 90

An Initial Idea: Selection Sort

7 641 2

 91

An Initial Idea: Selection Sort

7 641 2

 92

An Initial Idea: Selection Sort

7 641 2

 93

An Initial Idea: Selection Sort

7 641 2

 94

An Initial Idea: Selection Sort

7 641 2

 95

An Initial Idea: Selection Sort

7 641 2

 96

An Initial Idea: Selection Sort

7 641 2

 97

An Initial Idea: Selection Sort

7 641 2

 98

An Initial Idea: Selection Sort

7 641 2

 99

An Initial Idea: Selection Sort

741 2 6

 100

An Initial Idea: Selection Sort

741 2 6

 101

An Initial Idea: Selection Sort

741 2 6

 102

An Initial Idea: Selection Sort

741 2 6

 103

An Initial Idea: Selection Sort

741 2 6

 104

An Initial Idea: Selection Sort

741 2 6

 105

An Initial Idea: Selection Sort

741 2 6

 106

Selection Sort

● Find the smallest element and move it to
the first position.

● Find the second-smallest element and
move it to the second position.

● (etc.)

 107

Code for Selection Sort
void selectionSort(Vector<int>& elems) {
 for (int index = 0; index < elems.size(); index++) {
 int smallestIndex = indexOfSmallest(elems, index);
 swap(elems[index], elems[smallestIndex]);
 }
}

int indexOfSmallest(Vector<int>& elems, int startPoint) {
 int smallestIndex = startPoint;
 for (int i = startPoint + 1; i < elems.size(); i++) {
 if (elems[i] < elems[smallestIndex])
 smallestIndex = i;
 }
 return smallestIndex;
}

 108

Analyzing Selection Sort

● How much work do we do for selection
sort?

● To find the smallest value, we need to
look at all n array elements.

● To find the second-smallest value, we
need to look at n – 1 array elements.

● To find the third-smallest value, we need
to look at n – 2 array elements.

● Work is n + (n – 1) + (n – 2) + … + 1.

 109

n + (n-1) + ... + 2 + 1

n

n + 1

= n(n+1) / 2

 110

The Complexity of Selection Sort

 O(n (n + 1) / 2)

= O(n (n + 1))

= O(n2 + n)

= O(n2)

So selection sort runs in time O(n2).

 111

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

? ? ? ? ?

 112

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

? ? ? ? ?

 113

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

?? ? ? ?

 114

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

?? ? ? ?

 115

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

?? ? ? ?

 116

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

?? ? ? ?

 117

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

? ? ? ? ?

 118

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

??? ? ?

 119

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

??? ? ?

 120

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

? ?? ? ?

 121

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

? ?? ? ?

 122

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

? ?? ? ?

 123

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

?? ? ? ?

 124

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

?? ? ? ?

 125

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

?? ? ??

 126

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?
● Also O(n2)
● Selection sort always takes O(n2) time.
● Notation: Selection sort is Θ(n2).

 127

Thinking About O(n2)

 128

Thinking About O(n2)

14 6 3 9 7 16 2 15

 129

Thinking About O(n2)

14 6 3 9 7 16 2 15

T(n)

 130

Thinking About O(n2)

14 6 3 9 7 16 2 15

T(n)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

 131

Thinking About O(n2)

14 6 3 9 7 16 2 15

T(n)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(2n) ≈ 4T(n)

 132

Selection Sort Times
Size Selection Sort

10000 0.304

20000 1.218

30000 2.790

40000 4.646

50000 7.395

60000 10.584

70000 14.149

80000 18.674

90000 23.165

 133

Next Time

● Faster Sorting Algorithms
● Can you beat O(n2) time?

● Hybrid Sorting Algorithms
● When might selection sort be useful?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133

