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Algorithmic Analysis and Sorting
Part One
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Announcements

● Solutions to warm-up recursion problems 
have been posted.

● Midterm is next Monday, July 22 from 
7PM – 10PM.
● Cubberly Auditorium.
● Please email Michael and I ASAP if you have 

a conflict with the exam time.
● Please email Michael and I in the next 

couple of days if you need special 
accomodations.
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Midterm

● Close book, close note, close laptop
● No phones or MP3 Players

● Super lame, but it's been an issue in the past 
 =(

● If you find the noise of 120 scribbling on 
paper distracting, then I recommend 
wearing earplugs

● If you need to be able to check your phone 
(e.g. you're an on-call Doctor) then please let 
me know

● Covers material through this Wednesday
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Midterm

● Reference sheet will be provided at the exam

● Will be posted on the website later today.
● If you think something is missing that should be 

there, then please let me know!
● Practice Exam will be posted later today

● Please do not look at past midterms!

● We don't intentionally reuse problems.
● If you happen to look at a previous midterm by 

mistake: 

– Don't worry, you're not in trouble, but please let 
me know just so I can make sure everyone in the 
class has access to it.  I just want things to be 
fair.
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Studying for the Midterm

● Exam tests your understanding of data structures, 
recursion and algorithmic analysis (this week)

● Studying in CS106B involves:

● Section handout
● Practice midterm
● Problems in class and lecture slides
● Reading course reader

● Reading solutions is probably not sufficient!

● Study skills handout will be on the website later 
today.  Please read this!

● Do problems by hand, not on your computer!
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What May be on the Midterm

● Data structures:

● Ability to use them to solve problems
● Pros and cons of using different data structures

● Recursion:

● Tower of Hanoi
● “Divide-and-Conquer” (Random Parking)
● Exhaustive (Subsets,Permutations)
● Recursive Backtracking (Shrinkable Words)

● Simple Algorithmic Analysis (Big-O)
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What May be on the Midterm

● Mostly coding questions
● Maybe some short answer questions
● Maybe generate a decision tree
● Maybe read some code and tell me what 

it does
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What's not on the Midterm

● Name-the-function-call

● “What's the Stanford C++ method for 
getting an integer from the user?”

● Specific Algorithms
● “Implement Shaunting-Yard from memory”
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Everything in this class can be 
understood by anyone through hard 
work and effective study techniques.

If you would like help studying, please 
let me know.
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Memoization
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14 22 13 25 30 11 9

14 22 13 25 30 11 9

Maximize what's left in here.

Maximize what's left in here.
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Counting Recursive Calls

● Let n be the number of cities.
● Let C(n) be the number of function calls 

made.
● If n = 0, there is just one call, so C(0) = 1.
● If n = 1, there is just one call, so C(1) = 1.
● If n ≥ 2, we have the initial function call, 

plus the two recursive calls.  So 
C(n) = 1 + C(n – 1) + C(n – 2).
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Counting Recursive Calls
● C(0) = C(1) = 1.
● C(n) = 1 + C(n – 1) + C(n – 2)
● This gives the series

1, 1, 3, 5, 9, 15, 25, 41, 67, 109, 177, 
287, 465, 753, 1219, 1973, 3193, 5167, 

… 
● This function grows very quickly, so our 

solution will scale very poorly.
● Neat mathematical aside – these 

numbers are called the Leonardo 
numbers.
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We're doing completely unnecessary work!
Can we do better?
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Cell Towers Revisited
(cell-towers.cpp)
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What Just Happened?

● Remember what values we've 
computed so far.

● New base case: If we already computed 
the answer, we're done.

● When computing a recursive step, record 
the answer before we return it.

● This is called memoization.
● No, that is not a typo – there's no “r” in 

memoization.
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Memoization

● Memoization can be useful if you make 
redundant recursive calls and you don't 
need to explicitly explore every possible 
subset/permutation
● Why wouldn't memoization help in 

generating permutations/subsets?
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Introduction to Algorithmic 
Analysis
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Fundamental Question:

How can we compare solutions to 
problems?
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One Idea: Runtime
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Why Runtime Isn't a Good Measure

● Fluctuates based on size of input
● Sorting 210 integers vs 230 integers

● Fluctuates based on computer
● Sorting integers on a Department of Energy 

supercomputer vs a personal laptop

● Fluctuates based on difficulty of input
● Sorting 100 integers that are randomly 

permuted vs 100 integers that are almost in 
sorted order
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A Better Measure

● Instead of measuring the time it takes for 
an algorithm to run, measure the amount 
of “work” it does.
● Work: Any sort of operation the computer 

performs (eg. addition, multiplication, 
checking the condition of an if statement)

● Using this as a goal, let's develop a 
measure that addresses the concerns we 
outlined earlier
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Why Runtime Isn't a Good Measure

● Problem: Fluctuates based on size of 
input
● Solution: Let the amount of “work” be 

a function of the size of its input.
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double average(Vector<int>& vec) {
double total = 0.0;

  for (int i = 0; i < vec.size(); i++) {
      total += vec[i];
  }

return total / vec.size();
}
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double average(Vector<int>& vec) {
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      total += vec[i];
  }
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= work done in each iteration of the for loop

k
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= any other work done in the function (eg: 
  returning a value, initializing i to 0)
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0
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● k
0
n: component of work done that's dependent 

upon the length of vec
● k

1
: component of work done that's independent 

of the length of vec

● k
0
n: component of work done that's dependent 

upon the length of vec
● k

1
: component of work done that's independent 

of the length of vec
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Why Runtime Isn't a Good Measure

● Work = k
0
n + k

1

● How important is the “+ k
1
”?

● As n becomes large, “k0n + k1” is 
dominated by the “k

0
n” term, so we can 

drop the “+ k
1
” and still have a good 

sense of how much work the algorithm 
does

– Work = k0n
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● Work = k
0
n

● How important is the “k
0
”?

● “k
0
” is a function of how fast a computer can 

perform basic operations (add, multiply, 
divide, check boolean value, etc)

– “k
0
” is going to vary from computer to 

computer
● Because “k

0
” only tells us something about 

the computer the algorithm is run on, we 
choose to drop it.

● Work = n

Why Runtime Isn't a Good Measure
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Big-Observations

● Don't need to explicitly compute these 
constants.
● Whether runtime is 4n + 10 or 100n + 137, 

runtime is still proportional to input size.
● Can just plot the runtime to obtain actual 

values.

● Only the dominant term matters.
● For both 4n + 1000 and n + 137, for very 

large n most of the runtime is explained by 
n.

● Is there a concise way of describing this?
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Big-Observations
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Big-ObservationsNotation

● Ignore everything except the dominant 
growth term, including constant factors.

● Examples:
● 4n + 4 = O(n)
● 137n + 271 = O(n)
● n2 + 1000n + 100000 = O(n2)
● 2n + n3 = O(2n)
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Algorithmic Analysis with Big-O
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Algorithmic Analysis with Big-O

double average(Vector<int>& vec) {
double total = 0.0;

  for (int i = 0; i < vec.size(); i++) {
      total += vec[i];
  }

return total / vec.size();
}



 52

Algorithmic Analysis with Big-O
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Algorithmic Analysis with Big-O

double average(Vector<int>& vec) {
double total = 0.0;

  for (int i = 0; i < vec.size(); i++) {
      total += vec[i];
  }

return total / vec.size();
}

O(n)
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A More Interesting Example
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A More Interesting Example

bool linearSearch(string& str, char ch) {
for (int i = 0; i < str.length(); i++) {

if (str[i] == ch) {
return true;

    }
  }

return false;
}
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A More Interesting Example

bool linearSearch(string& str, char ch) {
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A More Interesting Example

bool linearSearch(string& str, char ch) {
for (int i = 0; i < str.length(); i++) {

if (str[i] == ch) {
return true;

    }
  }

return false;
}

How do we analyze this?
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A More Interesting Example
● Say we are performing a linear search 

for the character 'a' in these two strings:
● “this is my viola”
● “actually, that isn't”

● This comes back to one of our original 
concerns with simply measuring runtime
● Problem: Runtime fluctuates based on 

difficulty of input
● Solution: Make some sort of 

assumption of the difficulty of the input



 59

Types of Analysis

● Worst-Case Analysis
● What's the worst possible runtime for the algorithm?
● Useful for "sleeping well at night."

● Best-Case Analysis
● What's the best possible runtime for the algorithm?
● Useful to see if the algorithm performs well in some 

cases.

● Average-Case Analysis
● What's the average runtime for the algorithm?
● Far beyond the scope of this class; take CS109, 

CS161, CS365, or CS369N for more information!
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Types of Analysis

● Worst-Case Analysis
● What's the worst possible runtime for the algorithm?
● Useful for "sleeping well at night."

Best-Case Analysis

What's the best possible runtime for the algorithm?

Useful to see if the algorithm performs well in some 
cases.

Average-Case Analysis

What's the average runtime for the algorithm?

Far beyond the scope of this class; take CS109, 
CS161, CS365, or CS369N for more information!
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Worst Case Analysis
bool LinearSearch(string& str, char ch) {

for (int i = 0; i < str.length(); i++)
if (str[i] == ch)

return true;

return false;
}

O(n)

● Assume that “ch” is the worst possible 
location for this algorithm
● In this case, “ch” is not in str



 62

Determining if a Character is a Letter
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Determining if a Character is a Letter

bool isAlpha(char ch) {
   return (ch >= 'A' && ch <= 'Z') ||
          (ch >= 'a' && ch <= 'z');
}
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Determining if a Character is a Letter

bool isAlpha(char ch) {
   return (ch >= 'A' && ch <= 'Z') ||
          (ch >= 'a' && ch <= 'z');
}

O(1)
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What Can Big-O Tell Us?

● Long-term behavior of a function.
● If algorithm A is O(n) and algorithm B is 

O(n2), for large inputs algorithm A will 
always be faster.

● If algorithm A is O(n), for large inputs, 
doubling the size of the input roughly 
doubles the runtime.
– In other words, Big-O tells us how the running 

time of an algorithm grows as the size of its input 
grows

What “large” means on the terms we 
dropped!

What “large” means on the terms we 
dropped!
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What Can't Big-O Tell Us?

● The actual runtime of a function.
● 10100n = O(n)
● 10-100n = O(n)

● How a function behaves on small inputs.
● n3 = O(n3)
● 106 = O(1)
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Size 1 lg n n n log n n2 n3 2n

100 1μs 7μs 100μs 0.7ms 10ms <1min 40 quadrillion yrs

200 1μs 8μs 200μs 1.5ms 40ms <1min Just... wow.

300 1μs 8μs 300μs 2.5ms 90ms 1min

400 1μs 9μs 400μs 3.5ms 160ms 2min

500 1μs 9μs 500μs 4.5ms 250ms 4min

600 1μs 9μs 600μs 5.5ms 360ms 6min

700 1μs 9μs 700μs 6.6ms 490ms 9min

800 1μs 10μs 800μs 7.7ms 640ms 12min

900 1μs 10μs 900μs 8.8ms 810ms 17min

1000 1μs 10μs 1000μs 10ms 1000ms 22min

1100 1μs 10μs 1100μs 11ms 1200ms 29min

1200 1μs 10μs 1200μs 12ms 1400ms 37min

1300 1μs 10μs 1300μs 13ms 1700ms 45min

1400 1μs 10μs 1400μs 15ms 2000ms 56min

Comparison of Runtimes
(1 operation = 1 microsecond)
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Summary of Big-O

● A means of describing the growth rate of 
a function.

● Ignores all but the leading term.
● Ignores constants.
● Allows for quantitative ranking of 

algorithms.
● Allows for quantiative reasoning about 

algorithms.
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Sorting Algorithms
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The Sorting Problem

● Given a list of elements, sort those 
elements in ascending order.

● There are many ways to solve this 
problem.

● What is the best way to solve this 
problem?

● We'll use big-O to find out!
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The Sorting Problem

● Sorting is extremely important in 
Computer Science.
● Searching through sorted data is much 

faster than searching through unsorted data 
due to Binary Search
– It's okay if you haven't heard of Binary Search 

before, we'll cover it soon.
● Many data structures in Computer Science 

are simply fancy ways of storing data in 
sorted order
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The Sorting Problem

● Graphics: “Which objects can you see in 
a scene?”

● Scientific Simulation: “What particles are 
close enough to each other to exert some 
sort of force?”

● Machine Learning: “What training 
instance is this test instance most similar 
to?”
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An Initial Idea: Selection Sort
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Selection Sort

● Find the smallest element and move it to 
the first position.

● Find the second-smallest element and 
move it to the second position.

● (etc.)
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Code for Selection Sort
void selectionSort(Vector<int>& elems) {
  for (int index = 0; index < elems.size(); index++) {
    int smallestIndex = indexOfSmallest(elems, index);
    swap(elems[index], elems[smallestIndex]);
  }
}

int indexOfSmallest(Vector<int>& elems, int startPoint) {
  int smallestIndex = startPoint;
  for (int i = startPoint + 1; i < elems.size(); i++) {
    if (elems[i] < elems[smallestIndex])
      smallestIndex = i;
  }
  return smallestIndex;
}
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Analyzing Selection Sort

● How much work do we do for selection 
sort?

● To find the smallest value, we need to 
look at all n array elements.

● To find the second-smallest value, we 
need to look at n – 1 array elements.

● To find the third-smallest value, we need 
to look at n – 2 array elements.

● Work is n + (n – 1) + (n – 2) + … + 1.
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n + (n-1) + ... + 2 + 1             

n

n + 1

= n(n+1) / 2
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The Complexity of Selection Sort

   O(n (n + 1) / 2)

= O(n (n + 1))

= O(n2 + n)

= O(n2)

So selection sort runs in time O(n2).
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Notes on Selection Sort
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● How about the best case?

? ? ? ? ?



 112

Notes on Selection Sort

● Selection sort has runtime O(n2) in the 
worst case.

● How about the best case?

? ? ? ? ?



 113

Notes on Selection Sort

● Selection sort has runtime O(n2) in the 
worst case.

● How about the best case?

?? ? ? ?



 114

Notes on Selection Sort

● Selection sort has runtime O(n2) in the 
worst case.

● How about the best case?

?? ? ? ?



 115

Notes on Selection Sort

● Selection sort has runtime O(n2) in the 
worst case.

● How about the best case?

?? ? ? ?



 116

Notes on Selection Sort

● Selection sort has runtime O(n2) in the 
worst case.

● How about the best case?

?? ? ? ?



 117

Notes on Selection Sort

● Selection sort has runtime O(n2) in the 
worst case.

● How about the best case?

? ? ? ? ?



 118

Notes on Selection Sort

● Selection sort has runtime O(n2) in the 
worst case.

● How about the best case?

??? ? ?



 119

Notes on Selection Sort

● Selection sort has runtime O(n2) in the 
worst case.

● How about the best case?

??? ? ?



 120

Notes on Selection Sort

● Selection sort has runtime O(n2) in the 
worst case.

● How about the best case?

? ?? ? ?



 121

Notes on Selection Sort

● Selection sort has runtime O(n2) in the 
worst case.

● How about the best case?

? ?? ? ?



 122

Notes on Selection Sort

● Selection sort has runtime O(n2) in the 
worst case.

● How about the best case?

? ?? ? ?



 123

Notes on Selection Sort

● Selection sort has runtime O(n2) in the 
worst case.

● How about the best case?

?? ? ? ?



 124

Notes on Selection Sort

● Selection sort has runtime O(n2) in the 
worst case.

● How about the best case?

?? ? ? ?



 125

Notes on Selection Sort

● Selection sort has runtime O(n2) in the 
worst case.

● How about the best case?

?? ? ??



 126

Notes on Selection Sort

● Selection sort has runtime O(n2) in the 
worst case.

● How about the best case?
● Also O(n2)
● Selection sort always takes O(n2) time.
● Notation: Selection sort is Θ(n2).
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Thinking About O(n2)
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Thinking About O(n2)

14 6 3 9 7 16 2 15

T(n)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(2n) ≈ 4T(n)
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Selection Sort Times
Size Selection Sort

10000 0.304

20000 1.218

30000 2.790

40000 4.646

50000 7.395

60000 10.584

70000 14.149

80000 18.674

90000 23.165
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Next Time

● Faster Sorting Algorithms
● Can you beat O(n2) time?

● Hybrid Sorting Algorithms
● When might selection sort be useful?
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