Designing Abstractions



Announcements

 Review Sessions Tomorrow (Friday), 11-
11:50AM in Huang Auditorium

« Will be recorded by SCPD

« Plan: Answer questions and go through 1 or
2 problems on the 106X midterm

 Midterm on Monday, 7-10PM in Cubberly
Auditorium

 No office hours on Monday
 No class on Monday



Announcements

« Today's material will not be on the
midterm

» Assignment 3 due right now
« Assignment 4: Boggle!

« Features recursive backtracking
 Not due until a week after the midterm



Where are We...

* Course Goal: Develop a strong
understanding of basic data structures

e Class so far:

« Week 1: Basic C++

« Week 2: Data structures

« Week 3: Recursion

« Week 4: Algorithmic Analysis



We are almost ready to start
implementing and analyzing data
structures!

A couple C++ language features we need
to cover.



Classes

« Vector, Stack, Queue, Map, etc. are
classes in C++.

e Classes contain

 An interface specifying what operations can
be performed on instances of the class.

 An implementation specifying how those
operations are to be performed.

« To define our own classes, we must
define both the interface and the
implementation.



Classes in C++

* Defining a class in C++ (typically)
requires two steps:

* Create a header file (typically suffixed
with .h) describing the class's member

functions and data members.

* Create an implementation file (typically
suffixed with .cpp) that contains the
implementation of all the class's member
functions.

e Clients of the class can then include the
header file to use the class.



Classes

 Having a “good” interface is very
important.

« Poor design choices can have a negative
impact on every programmer who interacts
with the interface.

- This includes you!

« Modifying an interface after an
implementation has been written can result
in a lot of necessary code rewrites

 It's worth spending some time to think
about what you want to put in your
interface



Random Bags

A random bag is a data structure similar to a
stack or queue.

 Supports two operations:

 Add, which adds an element to the random bag,
and

« Remove random, which removes and returns a
random element from the bag.

 Has several applications:

« Random maze generation
« Shuffling decks of cards.



Random Bags
(RandomBag.cpp/h)



Random Bag: Private Variables

« Why did we make the vector private

« 2 good reasons to do this:

1) By not exposing the Vector, we retain the freedom
to change how we represent the RandomBag

- (e.g. swap Vector for a Queue)

2) We prevent the user from doing something we
don't want to the Vector

- We want to “protect” the data from the user.
We'll see a good example of this later today.



Language Philosophy

« Every programming language exports
some set of primitives:

« Primitive data types (int, char, etc.)
 Functions

e Classes

e etc.

« We can use those primitives to construct
a larger set of primitives:

e Vector, RandomBag, etc.



Where Does it Stop?

 The collections we've been using are not
primitives in C++; they are defined in
terms of other language features.

 Understanding those features will let us
analyze their efficiency.

 Understanding those features will let us
build other interesting abstractions.



Getting Space

int main() {
Vector<int> wvalues;

int numValues = getInteger ("How many?") ;
for (int 1 = 0; i1 < numValues; i++) {
values += 1;

}



Getting Storage Space

« How do the Vector, Stack, Queue, etc.

get space to store all the elements that
they hold?

« C code can request extra storage
space as the program is running.

» This is called dynamic memory
allocation.

« Before I explain this, we need to talk about
memory.



What is Memory?

« All variables and objects in C++ need
somewhere to live inside the computer's
memory.

« This is RAM, by the way, not disk space.

« Whenever an object is created, space
needs to be reserved for it.



Memory So Far

« So far, you have seen two types of variables:

« Local variables declared inside a function.

 Space is reserved for these variables when the
function is called.

 Space is reclaimed from these variables when the
function call ends.

« Global variables / constants declared outside a
function.

 Space is reserved for these variables when the
program stars up.

« Space is reclaimed from these variables when the
program exits.



Draw Memory
(Board)



Good luck on the exam!



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

