

Designing Abstractions

Announcements

● Review Sessions Tomorrow (Friday), 11-
11:50AM in Huang Auditorium
● Will be recorded by SCPD
● Plan: Answer questions and go through 1 or

2 problems on the 106X midterm

● Midterm on Monday, 7-10PM in Cubberly
Auditorium
● No office hours on Monday
● No class on Monday

Announcements

● Today's material will not be on the
midterm

● Assignment 3 due right now
● Assignment 4: Boggle!

● Features recursive backtracking
● Not due until a week after the midterm

Where are We...

● Course Goal: Develop a strong
understanding of basic data structures

● Class so far:
● Week 1: Basic C++
● Week 2: Data structures
● Week 3: Recursion
● Week 4: Algorithmic Analysis

We are almost ready to start
implementing and analyzing data

structures!

A couple C++ language features we need
to cover.

Classes

● Vector, Stack, Queue, Map, etc. are
classes in C++.

● Classes contain
● An interface specifying what operations can

be performed on instances of the class.
● An implementation specifying how those

operations are to be performed.

● To define our own classes, we must
define both the interface and the
implementation.

Classes in C++

● Defining a class in C++ (typically)
requires two steps:
● Create a header file (typically suffixed

with .h) describing the class's member
functions and data members.

● Create an implementation file (typically
suffixed with .cpp) that contains the
implementation of all the class's member
functions.

● Clients of the class can then include the
header file to use the class.

Classes

● Having a “good” interface is very
important.
● Poor design choices can have a negative

impact on every programmer who interacts
with the interface.
– This includes you!

● Modifying an interface after an
implementation has been written can result
in a lot of necessary code rewrites

● It's worth spending some time to think
about what you want to put in your
interface

Random Bags

● A random bag is a data structure similar to a
stack or queue.

● Supports two operations:
● Add, which adds an element to the random bag,

and
● Remove random, which removes and returns a

random element from the bag.
● Has several applications:

● Random maze generation
● Shuffling decks of cards.

Random Bags
(RandomBag.cpp/h)

Random Bag: Private Variables

● Why did we make the Vector private

● 2 good reasons to do this:

1) By not exposing the Vector, we retain the freedom
to change how we represent the RandomBag

– (e.g. swap Vector for a Queue)

2) We prevent the user from doing something we
don't want to the Vector

– We want to “protect” the data from the user.
We'll see a good example of this later today.

Language Philosophy

● Every programming language exports
some set of primitives:
● Primitive data types (int, char, etc.)
● Functions
● Classes
● etc.

● We can use those primitives to construct
a larger set of primitives:
● Vector, RandomBag, etc.

Where Does it Stop?

● The collections we've been using are not
primitives in C++; they are defined in
terms of other language features.

● Understanding those features will let us
analyze their efficiency.

● Understanding those features will let us
build other interesting abstractions.

Getting Space

int main() {
 Vector<int> values;

 int numValues = getInteger("How many?");
 for (int i = 0; i < numValues; i++) {
 values += i;
 }
}

Getting Storage Space

● How do the Vector, Stack, Queue, etc.
get space to store all the elements that
they hold?

● C++ code can request extra storage
space as the program is running.

● This is called dynamic memory
allocation.
● Before I explain this, we need to talk about

memory.

What is Memory?

● All variables and objects in C++ need
somewhere to live inside the computer's
memory.
● This is RAM, by the way, not disk space.

● Whenever an object is created, space
needs to be reserved for it.

Memory So Far

● So far, you have seen two types of variables:

● Local variables declared inside a function.
● Space is reserved for these variables when the

function is called.
● Space is reclaimed from these variables when the

function call ends.

● Global variables / constants declared outside a
function.

● Space is reserved for these variables when the
program stars up.

● Space is reclaimed from these variables when the
program exits.

Draw Memory
(Board)

Good luck on the exam!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

