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A Genomics Problem

● Suppose that you and I each own a genomics lab in 
which we store millions of human genomes.

● Each genome is a six-billion character string.

● We want to compare which genomes we have in 
common and we have the ability to communicate 
over a network.

● Sending data over a network is much slower than 
processing the data locally.

● Say, 1,000,000x slower.
● How might we determine which genomes we have 

in common?



  

A Naive Solution

● I send you all of my genomes and you 
compare them against the ones you have.

● Pros: Very easy to implement.
● Cons: Extremely slow.

● Might have to transmit thousands of 
terabytes (petabytes) of information!

● Even on a very fast network, this could take 
weeks.



  

A Slightly Better Solution

● I send you the first 1000 characters of each genome.  
(Remember a genome is six billion characters long).

● You look at the genomes you have that also start with 
that prefix and let me know which prefixes match.

● I then send you just those genomes, at which point you 
can find all matches.

● Pros: Cuts down data transmitted by a factor of one 
million!

● Cons: If many genomes start the same way, I might 
have to send you a bunch of redundant genomes.



  

Another Possible Solution

● In advance, we count up the number of each 
type of letter in each of our genomes.  This 
gives a frequency histogram.

● I send you the frequency histograms for each 
of my genomes.

● You then let me know which histograms match 
your own histogram.

● I then send you the genomes matching those 
histograms.  From there, you can find the 
matches.



  

Yet Another Possible Solution

● In advance, we run the following functions on each 
of our genomes:

  string getSynopsis(string& input) {
    string result;
    for (int i = 0; i < input.size(); i += 1000000)
        result += input[i];
    return result;
  }

● I send you the synopses of each of my genomes.

● You then let me know which of my synopses match 
your synopses.

● I then send you all genomes matching those 
synopses, from which you can find all matches.



  

The Essential Structure

● The general sketch of these latter approaches is:

● In advance, we find some quick way of 
summarizing our genomes.

● I send you just the summaries.
● You find genomes that match the summaries 

and let me know which ones match.
● I only send you complete genomes over the 

network if this first step yields a match.
● I might send you more genomes than you need, 

but I will never send you fewer genomes than 
you need.



  

The Essential Structure

The general sketch of these latter approaches is:

● In advance, we find some quick way of 
summarizing our genomes.

I send you just the summaries.

You find genomes that match the summaries 
and let me know which ones match.

I only send you complete genomes over the 
network if this first step yields a match.

I might send you more genomes than you need, 
but I will never send you fewer genomes than 
you need.



  

Hash Functions

● A hash function is a function that converts a 
large object (a genome, a string, a sequence of 
elements, etc.) into a smaller object (a shorter 
string, an integer, etc.)

● A hash function must be deterministic: given an 
input, it must always produce the same output.

● Why?

● A hash function should try to produce different 
outputs for different inputs.

● Not always possible if there are only finitely many 
possible outputs.



  

Why Hash Functions Matter



  

The Story So Far

● We have now seen two approaches to 
implementing collections classes:
● Dynamic arrays: allocating space and 

doubling it as needed.
● Linked lists: Allocating small chunks of 

space one at a time.

● These approaches are good for linear 
structures, where the elements are 
stored in some order.



  

Associative Structures

● Not all structures are linear.
● How do we implement Map, Set, and 
Lexicon efficiently?

● There are many options; we'll see 
one today.



  

An Initial Implementation

● One simple implementation of Map would be to 
store an array of key/value pairs.

● To look up the value associated with a key, scan 
across the array and see if it is present.

● To insert a key/value pair, check if the key is 
mapped.  If so, update it.  If not, add a new 
key/value pair.
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Analyzing this Approach

● What is the big-O time complexity of 
inserting a value?
● Sorted: O(n).
● Unsorted: O(n).

● What is the big-O time complexity of 
looking up a key?
● Sorted: O(log n).
● Unsorted: O(n).



  

Knowing Where to Look

● Our linked-list Queue implementation has 
O(1) enqueue, dequeue, and front.

● Why is this?
● Know exactly where to look to find or 

insert a value.
● Queue implementation was O(n) for 

enqueue, but was improved to O(1) by 
adding extra information about where to 
insert.



  

An Example: Clothes



  

Overview of Our Approach

● To store key/value pairs efficiently, we 
will do the following:
● Create a lot of buckets into which key/value 

pairs can be distributed.
● Choose a rule for assigning specific keys into 

specific buckets.
● To look up the value associated with a key:

– Jump into the bucket containing that key.
– Look at all the values in the bucket until you find 

the one associated with the key.



  

Overview of Our Approach
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Why Linked Lists?

● A dynamically allocated array of linked 
lists!

● This seems complicated, why are we 
using linked lists instead of Vectors?
● We'll give a very good reason for doing this.



  

How Do We Distribute Elements?

● Use a hash function!
● The input to the hash function is the object to 

distribute.
● The output of the function is the index of the 

bucket in which it should be.

● To do a lookup:
● Apply the hash function to the object to 

determine which bucket it belongs to.
● Look at all elements in the bucket to 

determine whether it's there.

● This data structure is called a hash table.



  

OurHashMap::OurHashMap()
OurHashMap::~OurHashMap()



  

Distributing Keys

● When distributing keys into buckets, we want the 
distribution to be as even as possible.

● Best-case: totally even spread.

● Worst-case: everything bunched up.



  

Distributing Keys

● When distributing keys into buckets, we want the 
distribution to be as even as possible.

● Best-case: totally even spread.

● Worst-case: everything bunched up.

...



  

Distributing Keys

● We want to choose a hash function that 
will distribute elements as evenly as 
possible to try to guarantee a nice, even 
spread.

● Suppose you want to build a hash 
function for names.

● One initial idea: Hash each last name to 
the first letter of that last name.

● How well will this distribute elements?
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Benford's Law

http://en.wikipedia.org/wiki/File:Benford-physical.svg



  

Building a Better Hash Function

● Designing good hash functions requires a level 
of mathematical sophistication far beyond the 
scope of this course.
● Take CS161 for details!

● Generally, hash functions work as follows:
● Scramble the input up in a way that converts it 

to a positive integer.
● Using the % operator, wrap the value from a 

positive integer to something in the range of 
buckets.



  

Good Hash Functions

● A good hash function typically will scramble all 
of the bits of the input together in a way that 
appears totally random.

● Hence the name “hash function.”



  

Bad Hash Functions



  

Bad Hash Functions #1

int myHash(string key) {

  return 0;

}



  

Bad Hash Functions #1

int myHash(string key) {

  return 0;

}

All key will be put in the same bucket!



  

Bad Hash Functions #2

int myHash(string key) {

  return randomInteger(0,NUM_BUCKETS);

}



  

Bad Hash Functions #2

int myHash(string key) {

  return randomInteger(0,NUM_BUCKETS);

}

Can't look up elements!



  

Bad Hash Functions #3

int myHash(string key) {

  int sum = 0;

  for (int i = 0; i < key.length(); i++) {

    sum += key[i];

  }

  return sum;

}



  

Bad Hash Functions #3

int myHash(string key) {

  int sum = 0;

  for (int i = 0; i < key.length(); i++) {

    sum += key[i];

  }

  return sum;

}

All permutations of the same string will
be put in the same bucket!

myHash(“abc”) = myHash(“cab”)



  

test-hash-codes.cpp



  

Some Interesting Numbers

● For 451 students and 26 buckets, given 
an optimal distribution of names into 
buckets, an average of 8.65 lookups are 
needed.

● Using first letter of first name: an 
average of 12.7 lookups are needed.

● Using the SAX hash function: an average 
of 9.6 lookups are needed.

● That's 25% faster than by first letter!



  

OurHashMap::put()
OurHashMap::get()



  

Hash Table Performance

● Suppose that we have n elements and b 
buckets.

● Assuming a good hash function, the 
expected time to look up an element is 
O(1 + n / b).

● The ratio n / b is called the load factor.
● Intuitively, this makes sense – if the 

elements are distributed evenly, you only 
need to look, on average, at n / b of them.



  

Hashing and Rehashing
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Hashing and Rehashing

● Idea: Track the number of buckets b and the 
number of total elements n.

● When inserting, if n/b exceeds some small 
constant (say, 2), double the number of buckets 
and redistribute the elements evenly.

● This makes n/b ≤ 2, so the expected lookup 
time in a hash table is O(1).

● On average, the lookup time is independent of 
the total number of elements in the table! 
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Why Linked Lists?

● Because we use linked lists, we don't 
need to create a bunch of new Vectors 
when we rehash!



  

OurHashMap::rehash()



  

The Final Analysis

● Expected time to do a lookup: O(1).
● Expected time to do an insertion:

● Every n elements, must double the table size 
and rehash.  Does O(n) work, but only every 
n iterations.

● Then does O(1) expected work to do the 
insertion.

● Amortized expected O(1) insertion!



  

Next Time

● Binary Search Trees
● Why are our Map and Set stored in sorted 

order?
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