

Hashing

A Genomics Problem

● Suppose that you and I each own a genomics lab in
which we store millions of human genomes.

● Each genome is a six-billion character string.

● We want to compare which genomes we have in
common and we have the ability to communicate
over a network.

● Sending data over a network is much slower than
processing the data locally.

● Say, 1,000,000x slower.
● How might we determine which genomes we have

in common?

A Naive Solution

● I send you all of my genomes and you
compare them against the ones you have.

● Pros: Very easy to implement.
● Cons: Extremely slow.

● Might have to transmit thousands of
terabytes (petabytes) of information!

● Even on a very fast network, this could take
weeks.

A Slightly Better Solution

● I send you the first 1000 characters of each genome.
(Remember a genome is six billion characters long).

● You look at the genomes you have that also start with
that prefix and let me know which prefixes match.

● I then send you just those genomes, at which point you
can find all matches.

● Pros: Cuts down data transmitted by a factor of one
million!

● Cons: If many genomes start the same way, I might
have to send you a bunch of redundant genomes.

Another Possible Solution

● In advance, we count up the number of each
type of letter in each of our genomes. This
gives a frequency histogram.

● I send you the frequency histograms for each
of my genomes.

● You then let me know which histograms match
your own histogram.

● I then send you the genomes matching those
histograms. From there, you can find the
matches.

Yet Another Possible Solution

● In advance, we run the following functions on each
of our genomes:

 string getSynopsis(string& input) {
 string result;
 for (int i = 0; i < input.size(); i += 1000000)
 result += input[i];
 return result;
 }

● I send you the synopses of each of my genomes.

● You then let me know which of my synopses match
your synopses.

● I then send you all genomes matching those
synopses, from which you can find all matches.

The Essential Structure

● The general sketch of these latter approaches is:

● In advance, we find some quick way of
summarizing our genomes.

● I send you just the summaries.
● You find genomes that match the summaries

and let me know which ones match.
● I only send you complete genomes over the

network if this first step yields a match.
● I might send you more genomes than you need,

but I will never send you fewer genomes than
you need.

The Essential Structure

The general sketch of these latter approaches is:

● In advance, we find some quick way of
summarizing our genomes.

I send you just the summaries.

You find genomes that match the summaries
and let me know which ones match.

I only send you complete genomes over the
network if this first step yields a match.

I might send you more genomes than you need,
but I will never send you fewer genomes than
you need.

Hash Functions

● A hash function is a function that converts a
large object (a genome, a string, a sequence of
elements, etc.) into a smaller object (a shorter
string, an integer, etc.)

● A hash function must be deterministic: given an
input, it must always produce the same output.

● Why?

● A hash function should try to produce different
outputs for different inputs.

● Not always possible if there are only finitely many
possible outputs.

Why Hash Functions Matter

The Story So Far

● We have now seen two approaches to
implementing collections classes:
● Dynamic arrays: allocating space and

doubling it as needed.
● Linked lists: Allocating small chunks of

space one at a time.

● These approaches are good for linear
structures, where the elements are
stored in some order.

Associative Structures

● Not all structures are linear.
● How do we implement Map, Set, and
Lexicon efficiently?

● There are many options; we'll see
one today.

An Initial Implementation

● One simple implementation of Map would be to
store an array of key/value pairs.

● To look up the value associated with a key, scan
across the array and see if it is present.

● To insert a key/value pair, check if the key is
mapped. If so, update it. If not, add a new
key/value pair.

Kitty

Awww...

Puppy

Cute!

Ibex

Huggable

Dikdik

Yay!

An Initial Implementation

● One simple implementation of Map would be to
store an array of key/value pairs.

● To look up the value associated with a key, scan
across the array and see if it is present.

● To insert a key/value pair, check if the key is
mapped. If so, update it. If not, add a new
key/value pair.

Kitty

Awww...

Puppy

Cute!

Ibex

Huggable

Dikdik

Yay!

Hagfish

Ewww..

An Initial Implementation

● One simple implementation of Map would be to
store an array of key/value pairs.

● To look up the value associated with a key, scan
across the array and see if it is present.

● To insert a key/value pair, check if the key is
mapped. If so, update it. If not, add a new
key/value pair.

Kitty

Awww...

Puppy

Really
Cute!

Ibex

Huggable

Dikdik

Yay!

Hagfish

Ewww..

Analyzing this Approach

● What is the big-O time complexity of
inserting a value?
● Sorted: O(n).
● Unsorted: O(n).

● What is the big-O time complexity of
looking up a key?
● Sorted: O(log n).
● Unsorted: O(n).

Knowing Where to Look

● Our linked-list Queue implementation has
O(1) enqueue, dequeue, and front.

● Why is this?
● Know exactly where to look to find or

insert a value.
● Queue implementation was O(n) for

enqueue, but was improved to O(1) by
adding extra information about where to
insert.

An Example: Clothes

Overview of Our Approach

● To store key/value pairs efficiently, we
will do the following:
● Create a lot of buckets into which key/value

pairs can be distributed.
● Choose a rule for assigning specific keys into

specific buckets.
● To look up the value associated with a key:

– Jump into the bucket containing that key.
– Look at all the values in the bucket until you find

the one associated with the key.

Overview of Our Approach

Bucket 0 Bucket 1 Bucket 2 Bucket 4 Bucket 6Bucket 3 Bucket 5

Harry

Hermione

RonDumbledore Hagrid

Voldemort

SnapeDraco

Minerva

Lily

Why Linked Lists?

● A dynamically allocated array of linked
lists!

● This seems complicated, why are we
using linked lists instead of Vectors?
● We'll give a very good reason for doing this.

How Do We Distribute Elements?

● Use a hash function!
● The input to the hash function is the object to

distribute.
● The output of the function is the index of the

bucket in which it should be.

● To do a lookup:
● Apply the hash function to the object to

determine which bucket it belongs to.
● Look at all elements in the bucket to

determine whether it's there.

● This data structure is called a hash table.

OurHashMap::OurHashMap()
OurHashMap::~OurHashMap()

Distributing Keys

● When distributing keys into buckets, we want the
distribution to be as even as possible.

● Best-case: totally even spread.

● Worst-case: everything bunched up.

Distributing Keys

● When distributing keys into buckets, we want the
distribution to be as even as possible.

● Best-case: totally even spread.

● Worst-case: everything bunched up.

...

Distributing Keys

● We want to choose a hash function that
will distribute elements as evenly as
possible to try to guarantee a nice, even
spread.

● Suppose you want to build a hash
function for names.

● One initial idea: Hash each last name to
the first letter of that last name.

● How well will this distribute elements?

Spring CS106B Name Distributions

A B C D E F G H I J K L M N O P Q R S T U VW X Y Z
0

5

10

15

20

25

30

35

40

45

By First Letter of Last Name

Benford's Law

http://en.wikipedia.org/wiki/File:Benford-physical.svg

Building a Better Hash Function

● Designing good hash functions requires a level
of mathematical sophistication far beyond the
scope of this course.
● Take CS161 for details!

● Generally, hash functions work as follows:
● Scramble the input up in a way that converts it

to a positive integer.
● Using the % operator, wrap the value from a

positive integer to something in the range of
buckets.

Good Hash Functions

● A good hash function typically will scramble all
of the bits of the input together in a way that
appears totally random.

● Hence the name “hash function.”

Bad Hash Functions

Bad Hash Functions #1

int myHash(string key) {

 return 0;

}

Bad Hash Functions #1

int myHash(string key) {

 return 0;

}

All key will be put in the same bucket!

Bad Hash Functions #2

int myHash(string key) {

 return randomInteger(0,NUM_BUCKETS);

}

Bad Hash Functions #2

int myHash(string key) {

 return randomInteger(0,NUM_BUCKETS);

}

Can't look up elements!

Bad Hash Functions #3

int myHash(string key) {

 int sum = 0;

 for (int i = 0; i < key.length(); i++) {

 sum += key[i];

 }

 return sum;

}

Bad Hash Functions #3

int myHash(string key) {

 int sum = 0;

 for (int i = 0; i < key.length(); i++) {

 sum += key[i];

 }

 return sum;

}

All permutations of the same string will
be put in the same bucket!

myHash(“abc”) = myHash(“cab”)

test-hash-codes.cpp

Some Interesting Numbers

● For 451 students and 26 buckets, given
an optimal distribution of names into
buckets, an average of 8.65 lookups are
needed.

● Using first letter of first name: an
average of 12.7 lookups are needed.

● Using the SAX hash function: an average
of 9.6 lookups are needed.

● That's 25% faster than by first letter!

OurHashMap::put()
OurHashMap::get()

Hash Table Performance

● Suppose that we have n elements and b
buckets.

● Assuming a good hash function, the
expected time to look up an element is
O(1 + n / b).

● The ratio n / b is called the load factor.
● Intuitively, this makes sense – if the

elements are distributed evenly, you only
need to look, on average, at n / b of them.

Hashing and Rehashing

0 1 2

Harry

Hermione

Ron

Dumbledore

Hagrid Snape

Draco Minerva

Lily

Hashing and Rehashing

0 1 2

Harry

Hermione

Ron

Dumbledore

Hagrid

Voldemort

Snape

Draco Minerva

Lily

Hashing and Rehashing

0 1 2

Harry

HermioneRon

Dumbledore Hagrid

Voldemort

Snape

Draco

Minerva Lily

3 4 5

Hashing and Rehashing

0 1 2

Harry

Hermione

Ron

Dumbledore Hagrid Voldemort

SnapeDraco

Minerva Lily

3 4 5

Hashing and Rehashing

● Idea: Track the number of buckets b and the
number of total elements n.

● When inserting, if n/b exceeds some small
constant (say, 2), double the number of buckets
and redistribute the elements evenly.

● This makes n/b ≤ 2, so the expected lookup
time in a hash table is O(1).

● On average, the lookup time is independent of
the total number of elements in the table!

X Q

H

V

Z J

X Q

H

V

Z J

X Q

H

V

Z J

XQ

H

V

Z J

XQ

H

V

Z J

XQ

H

V

Z J

XQ

H

V Z

J

XQ

H

V Z

J

XQ

H

V Z

J

XQ HV Z

J

XQ HV Z

J

Why Linked Lists?

● Because we use linked lists, we don't
need to create a bunch of new Vectors
when we rehash!

OurHashMap::rehash()

The Final Analysis

● Expected time to do a lookup: O(1).
● Expected time to do an insertion:

● Every n elements, must double the table size
and rehash. Does O(n) work, but only every
n iterations.

● Then does O(1) expected work to do the
insertion.

● Amortized expected O(1) insertion!

Next Time

● Binary Search Trees
● Why are our Map and Set stored in sorted

order?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

