Hashing

A Genomics Problem

- Suppose that you and I each own a genomics lab in which we store millions of human genomes.
- Each genome is a six-billion character string.
- We want to compare which genomes we have in common and we have the ability to communicate over a network.
- Sending data over a network is much slower than processing the data locally.
- Say, 1,000,000x slower.
- How might we determine which genomes we have in common?

A Naive Solution

- I send you all of my genomes and you compare them against the ones you have.
- Pros: Very easy to implement.
- Cons: Extremely slow.
- Might have to transmit thousands of terabytes (petabytes) of information!
- Even on a very fast network, this could take weeks.

A Slightly Better Solution

- I send you the first 1000 characters of each genome. (Remember a genome is six billion characters long).
- You look at the genomes you have that also start with that prefix and let me know which prefixes match.
- I then send you just those genomes, at which point you can find all matches.
- Pros: Cuts down data transmitted by a factor of one million!
- Cons: If many genomes start the same way, I might have to send you a bunch of redundant genomes.

Another Possible Solution

- In advance, we count up the number of each type of letter in each of our genomes. This gives a frequency histogram.
- I send you the frequency histograms for each of my genomes.
- You then let me know which histograms match your own histogram.
- I then send you the genomes matching those histograms. From there, you can find the matches.

Yet Another Possible Solution

- In advance, we run the following functions on each of our genomes:

```
string getSynopsis(string& input) {
    string result;
    for (int i = 0; i < input.size(); i += 1000000)
        result += input[i];
    return result;
}
```

- I send you the synopses of each of my genomes.
- You then let me know which of my synopses match your synopses.
- I then send you all genomes matching those synopses, from which you can find all matches.

The Essential Structure

- The general sketch of these latter approaches is:
- In advance, we find some quick way of summarizing our genomes.
- I send you just the summaries.
- You find genomes that match the summaries and let me know which ones match.
- I only send you complete genomes over the network if this first step yields a match.
- I might send you more genomes than you need, but I will never send you fewer genomes than you need.

The Essential Structure

The general sketch of these latter approaches is:

- In advance, we find some quick way of summarizing our genomes. I send you just the summaries. You find genomes that match the summaries and let me know which ones match.
I only send you complete genomes over the network if this first step yields a match.
I might send you more genomes than you need, but I will never send you fewer genomes than you need.

Hash Functions

- A hash function is a function that converts a large object (a genome, a string, a sequence of elements, etc.) into a smaller object (a shorter string, an integer, etc.)
- A hash function must be deterministic: given an input, it must always produce the same output.
- Why?
- A hash function should try to produce different outputs for different inputs.
- Not always possible if there are only finitely many possible outputs.

Why Hash Functions Matter

The Story So Far

- We have now seen two approaches to implementing collections classes:
- Dynamic arrays: allocating space and doubling it as needed.
- Linked lists: Allocating small chunks of space one at a time.
- These approaches are good for linear structures, where the elements are stored in some order.

Associative Structures

- Not all structures are linear.
- How do we implement Map, Set, and Lexicon efficiently?
- There are many options; we'll see one today.

An Initial Implementation

- One simple implementation of Map would be to store an array of key/value pairs.
- To look up the value associated with a key, scan across the array and see if it is present.
- To insert a key/value pair, check if the key is mapped. If so, update it. If not, add a new key/value pair.

Kitty	Puppy	Ibex	Dikdik
Awww...	Cute!	Huggable	Yay!

An Initial Implementation

- One simple implementation of Map would be to store an array of key/value pairs.
- To look up the value associated with a key, scan across the array and see if it is present.
- To insert a key/value pair, check if the key is mapped. If so, update it. If not, add a new key/value pair.

Kitty	Puppy	Ibex	Dikdik	Hagfish
Awww...	Cute!	Huggable	Yay!	Ewww..

An Initial Implementation

- One simple implementation of Map would be to store an array of key/value pairs.
- To look up the value associated with a key, scan across the array and see if it is present.
- To insert a key/value pair, check if the key is mapped. If so, update it. If not, add a new key/value pair.

Kitty	Puppy	Ibex	Dikdik	Hagfish
Awww...	Really Cute!	Huggable	Yay!	Ewww..

Analyzing this Approach

- What is the big-O time complexity of inserting a value?
- Sorted: O(n).
- Unsorted: O(n).
- What is the big-O time complexity of looking up a key?
- Sorted: O(log n).
- Unsorted: O(n).

Knowing Where to Look

- Our linked-list Queue implementation has $O(1)$ enqueue, dequeue, and front.
- Why is this?
- Know exactly where to look to find or insert a value.
- Queue implementation was $\mathrm{O}(n)$ for enqueue, but was improved to $O(1)$ by adding extra information about where to insert.

An Example: Clothes

Overview of Our Approach

- To store key/value pairs efficiently, we will do the following:
- Create a lot of buckets into which key/value pairs can be distributed.
- Choose a rule for assigning specific keys into specific buckets.
- To look up the value associated with a key:
- Jump into the bucket containing that key.
- Look at all the values in the bucket until you find the one associated with the key.

Overview of Our Approach

Why Linked Lists?

- A dynamically allocated array of linked lists!
- This seems complicated, why are we using linked lists instead of vectors?
- We'll give a very good reason for doing this.

How Do We Distribute Elements?

- Use a hash function!
- The input to the hash function is the object to distribute.
- The output of the function is the index of the bucket in which it should be.
- To do a lookup:
- Apply the hash function to the object to determine which bucket it belongs to.
- Look at all elements in the bucket to determine whether it's there.
- This data structure is called a hash table.

OurHashMap: : OurHashMap() OurHashMap: :~OurHashMap()

Distributing Keys

- When distributing keys into buckets, we want the distribution to be as even as possible.
- Best-case: totally even spread.
- Worst-case: everything bunched up.

Distributing Keys

- When distributing keys into buckets, we want the distribution to be as even as possible.
- Best-case: totally even spread.
- Worst-case: everything bunched up.

Distributing Keys

- We want to choose a hash function that will distribute elements as evenly as possible to try to guarantee a nice, even spread.
- Suppose you want to build a hash function for names.
- One initial idea: Hash each last name to the first letter of that last name.
- How well will this distribute elements?

Spring CS106B Name Distributions

 By First Letter of Last Name

Benford's Law

Building a Better Hash Function

- Designing good hash functions requires a level of mathematical sophistication far beyond the scope of this course.
- Take CS161 for details!
- Generally, hash functions work as follows:
- Scramble the input up in a way that converts it to a positive integer.
- Using the \% operator, wrap the value from a positive integer to something in the range of buckets.

Good Hash Functions

- A good hash function typically will scramble all of the bits of the input together in a way that appears totally random.
- Hence the name "hash function."

Bad Hash Functions

Bad Hash Functions \#1

int myHash(string key) \{
return 0;

Bad Hash Functions \#1

int myHash(string key) \{ return 0;

All key will be put in the same bucket!

Bad Hash Functions \#2

int myHash(string key) \{
return randomInteger(0,NUM_BUCKETS);
,

Bad Hash Functions \#2

int myHash(string key) \{
return randomInteger(0,NUM_BUCKETS);

Can't look up elements!

Bad Hash Functions \#3

int myHash(string key) \{
int sum = 0;
for (int i = 0; $i \quad$ key.length(); i++) \{
sum += key[i];
\}
return sum;

Bad Hash Functions \#3

int myHash(string key) \{
int sum $=0$;
for (int $i=0 ; i<k e y . l e n g t h() ; i++)$ \{

$$
\text { sum }+=\text { key[i]; }
$$

\}
return sum;
\}
All permutations of the same string will be put in the same bucket!
myHash ("abc") = myHash ("cab")

test-hash-codes.cpp

Some Interesting Numbers

- For 451 students and 26 buckets, given an optimal distribution of names into buckets, an average of $\mathbf{8 . 6 5}$ lookups are needed.
- Using first letter of first name: an average of 12.7 lookups are needed.
- Using the SAX hash function: an average of 9.6 lookups are needed.
- That's 25% faster than by first letter!

OurHashMap::put() OurHashMap::get()

Hash Table Performance

- Suppose that we have n elements and b buckets.
- Assuming a good hash function, the expected time to look up an element is $\mathbf{O}(\mathbf{1}+\boldsymbol{n} / \boldsymbol{b})$.
- The ratio n / b is called the load factor.
- Intuitively, this makes sense - if the elements are distributed evenly, you only need to look, on average, at n / b of them.

Hashing and Rehashing

Hashing and Rehashing

Voldemort

Hashing and Rehashing

Voldemort

Hashing and Rehashing

Hashing and Rehashing

- Idea: Track the number of buckets b and the number of total elements n.
- When inserting, if n / b exceeds some small constant (say, 2), double the number of buckets and redistribute the elements evenly.
- This makes $n / b \leq 2$, so the expected lookup time in a hash table is $\mathbf{O (1)}$.
- On average, the lookup time is independent of the total number of elements in the table!

Why Linked Lists?

- Because we use linked lists, we don't need to create a bunch of new vectors when we rehash!

OurHashMap:: rehash()

The Final Analysis

- Expected time to do a lookup: O(1).
- Expected time to do an insertion:
- Every n elements, must double the table size and rehash. Does O(n) work, but only every n iterations.
- Then does $O(1)$ expected work to do the insertion.
- Amortized expected O(1) insertion!

Next Time

- Binary Search Trees
- Why are our Map and set stored in sorted order?

