Binary Search Trees

Implementing set and Map

- So far we've seen how to implement the HashMap
- Let's now turn our attention to the Set and Map.
- Major operations:
- Insert
- Remove
- Contains

Goals for Set

- Fast insert, contains, remove
- "Fast" = better than O(n)

Goals for Set

- Fast insert, contains, remove
- "Fast" = better than O(n)
- To have our data be stored in sorted order.
- Why would we want this?

Yo Mark, give me all my facebook friends whose names start with ' K '

Yo Mark, give me all my facebook friends whose names start with ' K '

"Karen, Kara, Kaylee, Keith, Kevin, Kyle"

Yo Mark, give me all my facebook friends whose names start with ' K '

"Karen, Kara, Kaylee, Keith, Kevin, Kyle"

If Names in a Sorted Array

\ldots	Jack	Karen	Kara	Kaylee	Keith	Kevin	Kyle

If Names in a Sorted Array

\ldots	Jack	Karen	Kara	Kaylee	Keith	Kevin	Kyle

Binary Search finds first friend whose name starts with ' K ' in $\mathrm{O}(\log (\mathrm{n}))$ time

If Names in a Sorted Array

\ldots	Jack	Karen	Kara	Kaylee	Keith	Kevin	Kyle

If Names in a Sorted Array

\ldots	Jack	Karen	Kara	Kaylee	Keith	Kevin	Kyle

Friends: Karen,

If Names in a Sorted Array

\ldots	Jack	Karen	Kara	Kaylee	Keith	Kevin	Kyle

Friends: Karen, Kara,

If Names in a Sorted Array

\ldots	Jack	Karen	Kara	Kaylee	Keith	Kevin	Kyle

Friends: Karen, Kara, Kaylee,

If Names in a Sorted Array

Friends: Karen, Kara, Kaylee, Keith

If Names in a Sorted Array

\ldots	Jack	Karen	Kara	Kaylee	Keith	Kevin	Kyle

Friends: Karen, Kara, Kaylee, Keith, Kevin

If Names in a Sorted Array

Friends: Karen, Kara, Kaylee, Keith, Kevin, Kyle

Range Query

- A range query is a request for all values within a range.
- Databases: "Give me all Facebook friends who have posted a status update in the past week"
- Data Mining/Machine Learning: "Give me all training instances 'close to' this test instance"
- Computer Graphics: "Give me all the geometry within this neighborhood"
- If your data is sorted, then range queries can be executed very quickly.

Array Implementation

- We could implement the set as a list of all the values it contains.
- To add an element: $\mathbf{O (n)}$
- Check if the element already exists.
- If not, append it.
- To remove an element: O(n)
- Find and remove it from the list.
- To see if an element exists: $\mathbf{O}(\log \boldsymbol{n})$
- Search the list for the element.

Using Hashing

- If we have a hash function for the elements being stored, we can implement a set using a hash table.
- What is the expected time to insert a value?
- Answer: O(1).
- What is the expected time to remove a value?
- Answer: O(1).
- What is the expected time to check if a value exists?
- Answer: O(1).
- When a Set is implemented using hashing it is called a HashSet
- Effective implementation, elements are not sorted.

An Entirely Different Approach

$$
\begin{aligned}
& x=6 \\
& \begin{array}{lllll|l|l|l|l|l|l|l|l|l|l}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
16
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x=6 \\
& \begin{array}{ll|l|l|l|l|l|l|l|l|llllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16
\end{array} \\
& 1
\end{aligned}
$$

$$
\begin{aligned}
& x=6 \\
& \begin{array}{ll|l|l|l|l|llllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16
\end{array} \\
& 1
\end{aligned}
$$

$$
\begin{aligned}
& x=6 \\
& \begin{array}{ll|l|l|l|l|l|l|l|llllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
16
\end{array} \\
& \begin{array}{ll|l|l|l|l|l}
1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array} \\
& 1
\end{aligned}
$$

$$
\begin{aligned}
& x=6 \\
& \begin{array}{llllllll|llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16
\end{array} \\
& \begin{array}{l|l|l|l|l|l|l}
1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array} \\
& 1
\end{aligned}
$$

$$
\begin{aligned}
& x=6 \\
& \begin{array}{llllllll|llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16
\end{array} \\
& \begin{array}{l|l|l|l|l|l|}
1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{array} \\
& 1
\end{aligned}
$$

$$
\begin{aligned}
& x=6 \\
& \begin{array}{ll|l|l|l|l|l|l|l|llllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
16
\end{array} \\
& \begin{array}{ll|l|l|l|l}
1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{array} \\
& \begin{array}{l|l|l}
5 & 6 & 7
\end{array} \\
& 1
\end{aligned}
$$

$$
\begin{aligned}
& x=6 \\
& \begin{array}{ll|l|l|l|l|l|l|l|llllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
16
\end{array} \\
& \begin{array}{llllll|l|l}
1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array} \\
& \begin{array}{l|l|l}
5 & 6 & 7 \\
& & \\
& &
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x=6 \\
& \begin{array}{ll|l|l|l|l|l|l|l|llllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
16
\end{array} \\
& \begin{array}{llllll|l|l}
1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array} \\
& \begin{array}{|l|l|l|}
\hline 5 & 6 & 7 \\
\hline & \\
& &
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x=6 \\
& \begin{array}{ll|l|l|l|l|l|l|l|llllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
16
\end{array} \\
& \begin{array}{llllll|l|l}
1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array} \\
& \begin{array}{|l|l|l}
\hline 5 & 6 & 7 \\
\hline & & \\
& &
\end{array}
\end{aligned}
$$

Inspiration: Binary Search

- Binary search is so fast because at every step we are able to discard half of the remaining elements.
- Let's try to do something similar!
- Note: There are 2 ways to "derive" the structure I'm about to show you. I'll show you both.

Derivation 1

$$
\begin{array}{ccc}
& -1 & \\
-2 & 2 & 3 \\
& 4 & 6
\end{array}
$$

2

Derivation 2

Sorted Vectors and Linked Lists

- If we want to store a sorted sequence of elements, we have two choices:
- Sorted array
- Pro: Can run binary search
- Con: Insertion takes $\mathbf{O (n)}$ time
- Sorted linked list
- Pro: Insertion takes O(1) time if you know where you are inserting
- Con: Cannot run binary search
- Is there a way we can have the best of both worlds?
- Can we run binary search on a linked list?

head

Binary Search Trees

- The data structure we have just seen is called a binary search tree (or BST).
- Uses comparisons between elements to store elements efficiently.
- What our Set and Map use
- This is why a Set can only store elements for which the < operator is defined!

The Intuition

The Intuition

The Intuition

The Intuition

The Intuition

The Intuition

The Intuition

The Intuition

The Intuition

The Intuition

The Intuition

Tree Terminology

- A BST is a collection of nodes.
- The top node is called the root node.
- Nodes with no children are called leaves.

2

A Recursive View of BSTs

A Recursive View of BSTs

A Recursive View of BSTs

Lookup
 (Pseudocode)

Lookup
 (bst.cpp)

Inserting into a BST

Insertion
 (Pseudocode)


```
int main() {
```

 void listInsert(Cell* list, int value)
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
 \}
    ```
int main() {
```

 void listInsert (Cell* list, int value)
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
 \}


```
int main() {
```

 void listInsert(Cell* list, int value)
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
 \}


```
int main() {
    Cell* list = NULL;
    listInsert(list, 137);
    listInsert(list, 42);
    listInsert(list, 271);
```

list


```
int main() {
    Cell* list = NULL;
    listInsert(list, 137);
    listInsert(list, 42);
    listInsert(list, 271);
```

list

Why does

 nobody love me?
Pointers by Reference

- In order to resolve this problem, we must pass the linked list pointer by reference.
- Our new function:

Insertion
 (bst.cpp)

Insertion Order Matters

- Suppose we create a BST of numbers in this order:

$$
4,2,1,3,6,5,7
$$

4

Insertion Order Matters

- Suppose we create a BST of numbers in this order:

$$
1,2,3,4,5,6,7
$$

Tree Terminology

- The height of a tree is the number of nodes in the longest path from the root to a leaf.

Tree Terminology

- The height of a tree is the number of nodes in the longest path from the root to a leaf.

Efficiency of Insertion

- What is the big-O complexity of adding a node to a tree?
- Depends on the height of a tree!
- Worst-case: have to take the longest path down to find where the node goes.
- Time is $\mathbf{O}(\boldsymbol{h})$, where h is the height of the tree.

Tree Heights

- What are the maximum and minimum heights of a tree with n nodes?
- Maximum height: all nodes in a chain. Height is $\mathbf{O}(n)$.

Tree Heights

- What are the maximum and minimum heights of a tree with n nodes?
- Maximum height: all nodes in a chain. Height is $\mathbf{O}(n)$.
- Minimum height: Tree is as complete as possible. Height is $\mathbf{O}(\log \boldsymbol{n})$.

Keeping the Height Low

- There are many modifications of the binary search tree designed to keep the height of the tree low (usually $\mathbf{O}(\log \boldsymbol{n})$).
- A self-balancing binary search tree is a binary search tree that automatically adjusts itself to keep the height low.

Walking a BST

- One advantage of a BST is that elements are stored in sorted order.
- We can iterate over the elements of a BST in sorted order by walking the tree recursively.

Walking a BST

- One advantage of a BST is that elements are stored in sorted order.
- We can iterate over the elements of a BST in sorted order by walking the tree recursively.

Walking a BST

- One advantage of a BST is that elements are stored in sorted order.
- We can iterate over the elements of a BST in sorted order by walking the tree recursively.

Walking a BST

- One advantage of a BST is that elements are stored in sorted order.
- We can iterate over the elements of a BST in sorted order by walking the tree recursively.

Walking a BST

- One advantage of a BST is that elements are stored in sorted order.
- We can iterate over the elements of a BST in sorted order by walking the tree recursively.

Walking a BST

- One advantage of a BST is that elements are stored in sorted order.
- We can iterate over the elements of a BST in sorted order by walking the tree recursively.

Walking a BST

- One advantage of a BST is that elements are stored in sorted order.
- We can iterate over the elements of a BST in sorted order by walking the tree recursively.

Walking a BST

- One advantage of a BST is that elements are stored in sorted order.
- We can iterate over the elements of a BST in sorted order by walking the tree recursively.

Tree Traversals

- There are three general types of tree traversals:
- Preorder: Visit the node, then visit the children.
- Inorder: Visit the left child, then the node, then the right child.
- Postorder: Visit the children, then visit the node.

Walking a Tree

Printing a Tree (Pseudocode)

Printing a Tree
 (bst.cpp)

Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.

Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.

Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.

Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.

Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.

Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.

Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.

Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.

Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.

Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.

Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.

Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.

Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.

Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.

Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.

Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.

Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.

Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.

Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.

Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.

Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.

Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.

Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.

Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.
- This is done as follows:
- Base case: There is nothing to delete in an empty tree.
- Recursive step: Delete both subtrees, then delete the current node.

Freeing a tree (bst.cpp)

Range Queries

- We can use BSTs to do range queries, in which we find all values in the BST within some range.
- For example:
- If values in a BST are dates, can find all events that occurred within some time window.
- If values in a BST are samples of a random variable, can find everything within one and two standard deviations above the mean.

The Intuition

The Logic

- Base case:
- The empty tree has no nodes within any range.
- Recursive step:
- If this node is below the lower bound, recursively search the right subtree.
- If this node is above the upper bound, recursively search the left subtree.
- If this node is within bounds:
- Search the left subtree.
- Add this node to the output.
- Search the right subtree.

Complexity of Range Searches

- How do we get a runtime for a range search?
- Depends on how many nodes we find.

Complexity of Range Searches

- How do we get a runtime for a range search?
- Depends on how many nodes we find.

Complexity of Range Searches

- How do we get a runtime for a range search?
- Depends on how many nodes we find.

Complexity of Range Searches

- How do we get a runtime for a range search?
- Depends on how many nodes we find.

Complexity of Range Searches

- How do we get a runtime for a range search?
- Depends on how many nodes we find.

Complexity of Range Searches

- How do we get a runtime for a range search?
- Depends on how many nodes we find.

Complexity of Range Searches

- How do we get a runtime for a range search?
- Depends on how many nodes we find.

Complexity of Range Searches

- How do we get a runtime for a range search?
- Depends on how many nodes we find.

Complexity of Range Searches

- How do we get a runtime for a range search?
- Depends on how many nodes we find.

Complexity of Range Searches

- How do we get a runtime for a range search?
- Depends on how many nodes we find.

Complexity of Range Searches

- How do we get a runtime for a range search?
- Depends on how many nodes we find.
- If there are k nodes within the range, we do at least $\mathbf{O}(\mathbf{k})$ work finding them.
- In addition, we have two "border sets" of nodes that are immediately outside that range. Each set has size $\mathbf{O}(\boldsymbol{h})$, where h is the height of the tree.
- Total work done is $\mathbf{O}(\boldsymbol{k}+\boldsymbol{h})$.
- This is an output-sensitive algorithm.

Next Time

- Tries
- How our Lexicon is implemented!

