

Binary Search Trees

Implementing Set and Map

● So far we've seen how to implement the
HashMap

● Let's now turn our attention to the Set
and Map.

● Major operations:
● Insert
● Remove
● Contains

Goals for Set

● Fast insert, contains, remove
● “Fast” = better than O(n)

Goals for Set

● Fast insert, contains, remove
● “Fast” = better than O(n)

● To have our data be stored in sorted
order.
● Why would we want this?

Yo Mark, give me all my facebook
friends whose names start with 'K'

Yo Mark, give me all my facebook
friends whose names start with 'K'

“Karen, Kara, Kaylee, Keith,
Kevin, Kyle”

Yo Mark, give me all my facebook
friends whose names start with 'K'

“Karen, Kara, Kaylee, Keith,
Kevin, Kyle”

Facebook has hundreds of millions of
users. They need to be able to respond

to these types of queries FAST.

Facebook has hundreds of millions of
users. They need to be able to respond

to these types of queries FAST.

If Names in a Sorted Array

... Jack Karen Kara Kaylee Keith Kevin Kyle ...

If Names in a Sorted Array

... Jack Karen Kara Kaylee Keith Kevin Kyle ...

Binary Search finds first friend whose
name starts with 'K' in O(log(n)) time

If Names in a Sorted Array

... Jack Karen Kara Kaylee Keith Kevin Kyle ...

If Names in a Sorted Array

... Jack Karen Kara Kaylee Keith Kevin Kyle ...

Friends: Karen,

If Names in a Sorted Array

... Jack Karen Kara Kaylee Keith Kevin Kyle ...

Friends: Karen, Kara,

If Names in a Sorted Array

... Jack Karen Kara Kaylee Keith Kevin Kyle ...

Friends: Karen, Kara, Kaylee,

If Names in a Sorted Array

... Jack Karen Kara Kaylee Keith Kevin Kyle ...

Friends: Karen, Kara, Kaylee, Keith

If Names in a Sorted Array

... Jack Karen Kara Kaylee Keith Kevin Kyle ...

Friends: Karen, Kara, Kaylee, Keith, Kevin

If Names in a Sorted Array

... Jack Karen Kara Kaylee Keith Kevin Kyle ...

Friends: Karen, Kara, Kaylee, Keith, Kevin, Kyle

If names were not sorted, then we would
need to perform an O(n) linear search for

all friends whose names start with 'K'

If names were not sorted, then we would
need to perform an O(n) linear search for

all friends whose names start with 'K'

Range Query

● A range query is a request for all values
within a range.
● Databases: “Give me all Facebook friends

who have posted a status update in the past
week”

● Data Mining/Machine Learning: “Give me all
training instances 'close to' this test
instance”

● Computer Graphics: “Give me all the
geometry within this neighborhood”

● If your data is sorted, then range queries
can be executed very quickly.

Array Implementation

● We could implement the Set as a list of all the
values it contains.

● To add an element: O(n)
● Check if the element already exists.

● If not, append it.

● To remove an element: O(n)
● Find and remove it from the list.

● To see if an element exists: O(log n)
● Search the list for the element.

Using Hashing

● If we have a hash function for the elements being
stored, we can implement a Set using a hash table.

● What is the expected time to insert a value?

● Answer: O(1).
● What is the expected time to remove a value?

● Answer: O(1).
● What is the expected time to check if a value exists?

● Answer: O(1).
● When a Set is implemented using hashing it is called a
HashSet

● Effective implementation, elements are not sorted.

An Entirely Different Approach

 23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x = 6

 24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x = 6

 25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x = 6

 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x = 6

1 2 3 4 5 6 7

 27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x = 6

1 2 3 4 5 6 7

 28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x = 6

1 2 3 4 5 6 7

 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x = 6

1 2 3 4 5 6 7

5 6 7

 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x = 6

1 2 3 4 5 6 7

5 6 7

 31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x = 6

1 2 3 4 5 6 7

5 6 7

 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x = 6

1 2 3 4 5 6 7

5 6 7

Inspiration: Binary Search

● Binary search is so fast because at every
step we are able to discard half of the
remaining elements.

● Let's try to do something similar!
● Note: There are 2 ways to “derive” the

structure I'm about to show you. I'll
show you both.

Derivation 1

2

-1

4

3

0

-2

6

2

-1

4

3

0

-2

6

2

-1

4

3

0

-2

6

2

-1

40

-2

6

3

2

-1

40

-2

6

3

2

-1

40

-2

6

3

2

-1

40

-2

6

3

2

40

-2

6

-1

3

2

4
0-2 6

-1

3

2

4
0-2 6

-1

3

2

4
0-2 6

-1

3

2

4
0-2 6

-1

3

2

4

3

0-2 6

-1

2

3

0-2 6

-1 4

2

30-2 6

-1 4

2

30-2 6

-1 4

2

30-2 6

-1 4

22

30-2 6

-1 4

30-2 6

-1 4

4

22

30-2 6

-1 4

30-2 6

-1

4

3

4

22

30-2 6

-1

0-2 6

-1

3

4

3

4

22

0-2 6

-1

0-2 6

-1

2

3

4

3

4

2

0-2 6

-1

0-2 6

-1

2

-1

2

3

4

3

4

0-2 6

-1

0-2 6

-1

-2

2

-1

2

3

4

3

4

0-2 60 6

-2

-1

-2

2

-1

2

3

4

3

4

0 60 6

Derivation 2

Sorted Vectors and Linked Lists
● If we want to store a sorted sequence of

elements, we have two choices:
● Sorted array

– Pro: Can run binary search
– Con: Insertion takes O(n) time

● Sorted linked list
– Pro: Insertion takes O(1) time if you know

where you are inserting
– Con: Cannot run binary search

● Is there a way we can have the best of
both worlds?
● Can we run binary search on a linked list?

2-1 430-2 6

head

2

-1 430-2 6

head

2

-1 430-2 6

head

2

-1 430-2 6

head

2

-1 430-2 6

head

2

-1 430-2 6

head

2

-1 4

30-2 6

head

2

-1 4

30-2 6

head

2

-1 4

30-2 6

head

Binary Search Trees

● The data structure we have just seen is
called a binary search tree (or BST).

● Uses comparisons between elements to
store elements efficiently.

● What our Set and Map use
● This is why a Set can only store elements for

which the < operator is defined!

The Intuition

The Intuition

2

-1 4

-2 0 63

The Intuition

2

-1 4

-2 0 63

0

The Intuition

2

-1 4

-2 0 63

0

The Intuition

2

-1 4

-2 0 63

0

The Intuition

2

-1 4

-2 0 63

0

Values less than two Values greater than two

The Intuition

2

-1 4

-2 0 63

0

Values less than two Values greater than two

The Intuition

2

-1 4

-2 0 63

0

The Intuition

2

-1 4

-2 0 63

0

Values less
than -1

Values greater
than -1

The Intuition

2

-1 4

-2 0 63

0

Values less
than -1

Values greater
than -1

The Intuition

2

-1 4

-2 0 63

0

Tree Terminology

● A BST is a collection of nodes.
● The top node is called the root node.
● Nodes with no children are called

leaves.

2

-1 4

-2 0 63

A Recursive View of BSTs

2

-1 4

-2 0 63

A Recursive View of BSTs

2

-1 4

-2 0 63

A Recursive View of BSTs

Lookup
(Pseudocode)

Lookup
(bst.cpp)

Inserting into a BST

2

30-2 6

-1 4

2

30-2 6

-1 4

Inserting into a BST

2

30-2 6

-1 4

1

22

30-2 6

-1 4

Inserting into a BST

30-2 6

-1 4

1

2

-1

2

30-2 6

-1 4

Inserting into a BST

30-2 6

4

1

-1

0

2

-1

2

30-2 6

4

Inserting into a BST

3-2 6

4

1

0

-1

0

2

-1

2

3-2 6

4

Inserting into a BST

3-2 6

4

1

Insertion
(Pseudocode)

int main() {
 Cell* list = NULL;
 listInsert(list, 137);
 listInsert(list, 42);
 listInsert(list, 271);
}

int main() {
 Cell* list = NULL;
 listInsert(list, 137);
 listInsert(list, 42);
 listInsert(list, 271);
}

int main() {
 Cell* list = NULL;
 listInsert(list, 137);
 listInsert(list, 42);
 listInsert(list, 271);
}

int main() {
 Cell* list = NULL;
 listInsert(list, 137);
 listInsert(list, 42);
 listInsert(list, 271);
}

int main() {
 Cell* list = NULL;
 listInsert(list, 137);
 listInsert(list, 42);
 listInsert(list, 271);
}

int main() {
 Cell* list = NULL;
 listInsert(list, 137);
 listInsert(list, 42);
 listInsert(list, 271);
}

list

int main() {
 Cell* list = NULL;
 listInsert(list, 137);
 listInsert(list, 42);
 listInsert(list, 271);
}

int main() {
 Cell* list = NULL;
 listInsert(list, 137);
 listInsert(list, 42);
 listInsert(list, 271);
}

list

int main() {
 Cell* list = NULL;
 ListInsert(list, 137);
 ListInsert(list, 42);
 ListInsert(list, 271);
}

int main() {
 Cell* list = NULL;
 ListInsert(list, 137);
 ListInsert(list, 42);
 ListInsert(list, 271);
}

list

void listInsert(Cell* list, int value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

void listInsert(Cell* list, int value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

list 137value

int main() {
 Cell* list = NULL;
 ListInsert(list, 137);
 ListInsert(list, 42);
 ListInsert(list, 271);
}

int main() {
 Cell* list = NULL;
 ListInsert(list, 137);
 ListInsert(list, 42);
 ListInsert(list, 271);
}

list

void listInsert(Cell* list, int value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

void listInsert(Cell* list, int value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

list 137value

int main() {
 Cell* list = NULL;
 ListInsert(list, 137);
 ListInsert(list, 42);
 ListInsert(list, 271);
}

int main() {
 Cell* list = NULL;
 ListInsert(list, 137);
 ListInsert(list, 42);
 ListInsert(list, 271);
}

list

void listInsert(Cell* list, int value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

void listInsert(Cell* list, int value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

list 137valuenewCell

int main() {
 Cell* list = NULL;
 ListInsert(list, 137);
 ListInsert(list, 42);
 ListInsert(list, 271);
}

int main() {
 Cell* list = NULL;
 ListInsert(list, 137);
 ListInsert(list, 42);
 ListInsert(list, 271);
}

list

void listInsert(Cell* list, int value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

void listInsert(Cell* list, int value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

???

???

list 137valuenewCell

int main() {
 Cell* list = NULL;
 ListInsert(list, 137);
 ListInsert(list, 42);
 ListInsert(list, 271);
}

int main() {
 Cell* list = NULL;
 ListInsert(list, 137);
 ListInsert(list, 42);
 ListInsert(list, 271);
}

list

void listInsert(Cell* list, int value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

void listInsert(Cell* list, int value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

???

???

list 137valuenewCell

int main() {
 Cell* list = NULL;
 ListInsert(list, 137);
 ListInsert(list, 42);
 ListInsert(list, 271);
}

int main() {
 Cell* list = NULL;
 ListInsert(list, 137);
 ListInsert(list, 42);
 ListInsert(list, 271);
}

list

void listInsert(Cell* list, int value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

void listInsert(Cell* list, int value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

137

???

list 137valuenewCell

int main() {
 Cell* list = NULL;
 ListInsert(list, 137);
 ListInsert(list, 42);
 ListInsert(list, 271);
}

int main() {
 Cell* list = NULL;
 ListInsert(list, 137);
 ListInsert(list, 42);
 ListInsert(list, 271);
}

list

void listInsert(Cell* list, int value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

void listInsert(Cell* list, int value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

list

137

???

137valuenewCell

int main() {
 Cell* list = NULL;
 ListInsert(list, 137);
 ListInsert(list, 42);
 ListInsert(list, 271);
}

int main() {
 Cell* list = NULL;
 ListInsert(list, 137);
 ListInsert(list, 42);
 ListInsert(list, 271);
}

list

void listInsert(Cell* list, int value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

void listInsert(Cell* list, int value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

list

137

137valuenewCell

int main() {
 Cell* list = NULL;
 ListInsert(list, 137);
 ListInsert(list, 42);
 ListInsert(list, 271);
}

int main() {
 Cell* list = NULL;
 ListInsert(list, 137);
 ListInsert(list, 42);
 ListInsert(list, 271);
}

list

void listInsert(Cell* list, int value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

void listInsert(Cell* list, int value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

list

137

137valuenewCell

int main() {
 Cell* list = NULL;
 ListInsert(list, 137);
 ListInsert(list, 42);
 ListInsert(list, 271);
}

int main() {
 Cell* list = NULL;
 ListInsert(list, 137);
 ListInsert(list, 42);
 ListInsert(list, 271);
}

list

void listInsert(Cell* list, int value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

void listInsert(Cell* list, int value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

list

137

137valuenewCell

int main() {
 Cell* list = NULL;
 listInsert(list, 137);
 listInsert(list, 42);
 listInsert(list, 271);
}

int main() {
 Cell* list = NULL;
 listInsert(list, 137);
 listInsert(list, 42);
 listInsert(list, 271);
}

list

137

int main() {
 Cell* list = NULL;
 listInsert(list, 137);
 listInsert(list, 42);
 listInsert(list, 271);
}

int main() {
 Cell* list = NULL;
 listInsert(list, 137);
 listInsert(list, 42);
 listInsert(list, 271);
}

list

137

Why does
nobody love me?

Pointers by Reference

● In order to resolve this problem, we must pass
the linked list pointer by reference.

● Our new function:

void listInsert(Cell*& list, int value) {

 Cell* newCell = new Cell;

 cell->value = value;

 cell->next = list;

 list = cell;

}

This is a reference to a pointer to a
Cell. It's often useful to read this

from the right to the left.

This is a reference to a pointer to a
Cell. It's often useful to read this

from the right to the left.

int main() {
 Cell* list = NULL;
 listInsert(list, 137);
 listInsert(list, 42);
 listInsert(list, 271);
}

int main() {
 Cell* list = NULL;
 listInsert(list, 137);
 listInsert(list, 42);
 listInsert(list, 271);
}

list

void listInsert(Cell*& list, int value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

void listInsert(Cell*& list, int value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

137

list 137value newCell

Insertion
(bst.cpp)

Insertion Order Matters

● Suppose we create a BST of numbers in
this order:

4, 2, 1, 3, 6, 5, 7

4

2

1 3

6

5 7

Insertion Order Matters

● Suppose we create a BST of numbers in
this order:

1, 2, 3, 4, 5, 6, 7

1
2

3
4

5
6

7

Tree Terminology

● The height of a tree is the number of
nodes in the longest path from the root
to a leaf.

4

2

1 3

6

5 7

Tree Terminology

● The height of a tree is the number of
nodes in the longest path from the root
to a leaf.

1
2

3
4

5
6

7

Efficiency of Insertion

● What is the big-O complexity of adding a
node to a tree?

● Depends on the height of a tree!
● Worst-case: have to take the longest path

down to find where the node goes.
● Time is O(h), where h is the height of the

tree.

Tree Heights

● What are the maximum and minimum heights
of a tree with n nodes?

● Maximum height: all nodes in a chain. Height
is O(n).

● Minimum height: Tree is as complete as
possible. Height is O(log n).

4

2

1 3

6

5 7

Tree Heights

● What are the maximum and minimum heights
of a tree with n nodes?

● Maximum height: all nodes in a chain. Height
is O(n).

● Minimum height: Tree is as complete as
possible. Height is O(log n).

4

2

1 3

6

5 7

Keeping the Height Low

● There are many modifications of the
binary search tree designed to keep the
height of the tree low (usually O(log n)).

● A self-balancing binary search tree is
a binary search tree that automatically
adjusts itself to keep the height low.

Walking a BST

● One advantage of a BST is that elements
are stored in sorted order.

● We can iterate over the elements of a
BST in sorted order by walking the tree
recursively.

4

2

1 3

6

5 7

Walking a BST

● One advantage of a BST is that elements
are stored in sorted order.

● We can iterate over the elements of a
BST in sorted order by walking the tree
recursively.

4

2

1 3

6

5 7

Walking a BST

● One advantage of a BST is that elements
are stored in sorted order.

● We can iterate over the elements of a
BST in sorted order by walking the tree
recursively.

4

2

1 3

6

5 7

Walking a BST

● One advantage of a BST is that elements
are stored in sorted order.

● We can iterate over the elements of a
BST in sorted order by walking the tree
recursively.

4

2

1 3

6

5 7

1 2 3

Walking a BST

● One advantage of a BST is that elements
are stored in sorted order.

● We can iterate over the elements of a
BST in sorted order by walking the tree
recursively.

4

2

1 3

6

5 7

1 2 3

Walking a BST

● One advantage of a BST is that elements
are stored in sorted order.

● We can iterate over the elements of a
BST in sorted order by walking the tree
recursively.

4

2

1 3

6

5 7

1 2 3 4

Walking a BST

● One advantage of a BST is that elements
are stored in sorted order.

● We can iterate over the elements of a
BST in sorted order by walking the tree
recursively.

4

2

1 3

6

5 7

1 2 3 4

Walking a BST

● One advantage of a BST is that elements
are stored in sorted order.

● We can iterate over the elements of a
BST in sorted order by walking the tree
recursively.

4

2

1 3

6

5 7

1 2 3 4 5 6 7

Tree Traversals

● There are three general types of tree
traversals:

● Preorder: Visit the node, then visit the
children.

● Inorder: Visit the left child, then the
node, then the right child.

● Postorder: Visit the children, then visit
the node.

Walking a Tree

4

2

1 3

6

5 7

1 2 3 4 5 6 7

4 2 1 3 6 5 7

1 3 2 5 7 6 4

Inorder

Preorder

Postorder

Printing a Tree
(Pseudocode)

Printing a Tree
(bst.cpp)

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

4

2

1 3

6

5 7

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

4

2

1 3

6

5 7

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

4

2

1 3

6

5 7

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

4

2

1 3

6

5 7

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

4

2

1 3

6

5 7

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

4

2

3

6

5 7

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

4

2

3

6

5 7

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

4

2

3

6

5 7

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

4

2 6

5 7

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

4

2 6

5 7

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

4

6

5 7

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

4

6

5 7

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

4

6

5 7

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

4

6

5 7

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

4

6

7

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

4

6

7

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

4

6

7

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

4

6

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

4

6

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

4

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

4

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

● This is done as follows:

● Base case: There is nothing to delete in an
empty tree.

● Recursive step: Delete both subtrees, then
delete the current node.

Freeing a tree
(bst.cpp)

Range Queries

● We can use BSTs to do range queries, in
which we find all values in the BST
within some range.

● For example:
● If values in a BST are dates, can find all

events that occurred within some time
window.

● If values in a BST are samples of a random
variable, can find everything within one and
two standard deviations above the mean.

The Intuition

2

-1 4

-2 0 63

The Intuition

2

-1 4

-2 0 63

-1 +5

The Intuition

2

-1 4

-2 0 63

-1 +5

The Intuition

2

-1 4

-2 0 63

-1 +5

The Intuition

2

-1 4

-2 0 63

-1 +5

The Intuition

2

-1 4

-2 0 63

-1 +5

The Intuition

2

-1 4

-2 0 63

-1 +5

The Intuition

2

-1 4

-2 0 63

-1 +5

The Logic

● Base case:
● The empty tree has no nodes within any range.

● Recursive step:
● If this node is below the lower bound, recursively

search the right subtree.
● If this node is above the upper bound, recursively

search the left subtree.
● If this node is within bounds:

– Search the left subtree.

– Add this node to the output.

– Search the right subtree.

Complexity of Range Searches

● How do we get a runtime for a range search?

● Depends on how many nodes we find.

Complexity of Range Searches

● How do we get a runtime for a range search?

● Depends on how many nodes we find.

Complexity of Range Searches

● How do we get a runtime for a range search?

● Depends on how many nodes we find.

Complexity of Range Searches

● How do we get a runtime for a range search?

● Depends on how many nodes we find.

Complexity of Range Searches

● How do we get a runtime for a range search?

● Depends on how many nodes we find.

Complexity of Range Searches

● How do we get a runtime for a range search?

● Depends on how many nodes we find.

Complexity of Range Searches

● How do we get a runtime for a range search?

● Depends on how many nodes we find.

Complexity of Range Searches

● How do we get a runtime for a range search?

● Depends on how many nodes we find.

Complexity of Range Searches

● How do we get a runtime for a range search?

● Depends on how many nodes we find.

Complexity of Range Searches

● How do we get a runtime for a range search?

● Depends on how many nodes we find.

Complexity of Range Searches

● How do we get a runtime for a range search?

● Depends on how many nodes we find.

● If there are k nodes within the range, we do at
least O(k) work finding them.

● In addition, we have two “border sets” of nodes
that are immediately outside that range. Each
set has size O(h), where h is the height of the
tree.

● Total work done is O(k + h).
● This is an output-sensitive algorithm.

Next Time

● Tries
● How our Lexicon is implemented!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181

