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Change in Schedule
● I'm changing the schedule around a bit...

● Today: Graphs
● Tuesday: Shortest Path Algorithms
● Wednesday: Minimum Spanning Trees
● Tursday: Review Session for Midterm II



  

Final

● Final: Monday, August 12th, 7-10pm

● Location: Cubberly Auditorium
● Cumulative (but weighted towards post midterm 

material)
● Covers material up through Tuesday

– SCPD students and students who require 
special arrangements should email me in the 
next couple days

● We do the final “early” so we have time to grade 
it, get it back to you and resolve any grading 
issues.



  

} //Announcements



  

Data Structures Cheat Sheet

● Vector, Stack: dynamic array

● Queue: linked list or dynamic array

● Set, Map: Binary Search Tree

● HashSet, HashMap: Hash Table

● Lexicon: Trie



  

Graphs



  

A Social Network



  

http://strangemaps.files.wordpress.com/2007/02/fullinterstatemap-web.jpg



  

http://www.toothpastefordinner.com/
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A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes 
connected by edges.

Edges



  

Some graphs are directed.
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Some graphs are undirected.

You can think of them as directed
graphs with edges both ways.



  

Graphs
● “Yo Teach, why are we studying graphs?”

● We study graphs because a lot of problems 
can be modeled in terms of graphs

● Also, there are many off-the-shelf graph 
algorithms that we apply if we're able to 
formulate a problem as a graph problem.



  

Pathfinding

● Each intersection is a node

● Each street connecting intersections is an edge

● Find paths between intersections that minimize 
distance or travel time



  

Content-Aware Resizing



  

Content-Aware Resizing

● Each pixel is a node in a graph

● Each pixel is connected to adjacent pixels

● Find paths from the top of the image to the 
bottom that minimize the “energy function”



  

The Wikipedia Graph

● Wikipedia (and the 
web in general) is 
a graph!

● Each page is a 
node.

● There is an edge 
from one page to 
another if the first 
page links to the 
second.



  

Social Networks and Epidemics

http://3278as3udzze1hdk0f2th5nf18c1.wpengine.netdna-cdn.com/wp-content/uploads/2010/09/social-networks-new-science1.jpg

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=MPB6JuYe9sdbDM&tbnid=VWbN0BtTG7-ZWM:&ved=0CAUQjRw&url=http%3A%2F%2Fblogs.cornell.edu
%2Finfo2040%2F2011%2F09%2F17%2Fhow-network-structure-can-provide-advanced-warning-about-epidemics
%2F&ei=rrP9Ufa8G6n0iwK9q4CoBQ&bvm=bv.50165853,d.cGE&psig=AFQjCNHljXC1ZggH6hQDrKxPM1CV7ocVXQ&ust=1375667391653650



  

How can we represent graphs in C++?



  

Representing Graphs

Node Connected To            

Vector<Node*>      Node*

Map<Node*, Vector<Node*>>   
We can represent a graph as 
a map from nodes to the list 

of nodes each node is 
connected to.

We can represent a graph as 
a map from nodes to the list 

of nodes each node is 
connected to.



  

What interesting things can we do with 
graphs?



  

Connected Components

● A connected component is a subset of the 
nodes in a graph such that:

● For every pair of nodes in the subset there 
exists a path between them

● No node in the subset is not connected any 
node not in the subset



  

Connected Components

1 Connected Component



  

Connected Components

2 Connected Components



  

Connected Components

3 Connected Components



  

Connected Components

6 Connected Components



  

Connected Components

● Detecting connected components in a graph is 
important because it can provide useful 
insights into the structure of graph

● e.g. How do people in a community separate 
themselves into separate groups.

● In order to detect connected components we 
first need to be able to iterate over nodes in a 
graph.

● We'll come back to connected components 
later.



  

Iterating over a Graph

● Given a linked list, there was just one way to 
traverse the list.
● Keep going forward.

● In a binary search tree, there are many traversal 
strategies:

● An inorder traversal that produces all the 
elements in sorted order.

● A postorder traversal used to delete all the 
nodes in the BST.

● There are many ways to iterate over a graph.



  

Iterating over a Graph

● All methods of iterating over a graph involve 
keeping track of 3 sets of nodes:

Set of Nodes already visited

Set of Nodes to look at next

Everything else
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Iterating over a Graph

● All methods of iterating over a graph involve 
keeping track of 3 sets of nodes:

Set of Nodes already visited

Set of Nodes to look at next

Everything else

● Methods of iterating over nodes differ in how 
they choose which node to look at next



  

Recursive Depth First Search
● To detect connected components we just 

want to see whether or not some path 
exists between them (we don't care about 
finding the “shortest” path).

● One way to detect connectivity would be 
to just pick an arbitrary direction and 
keep following it.
● When you run out of room to go in one 

direction, just go back and look in a 
different direction
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Recursive Depth-First Search

● To do a depth-first search (DFS) from a 
node u, do the following:
● If u is already marked, stop.
● Mark u.
● For each neighbor v of u:

– Recursively run DFS from v.

● The backtracking here is similar to the 
backtracking done in standard recursion.



  

Iterative Depth-First Search

● DFS is most commonly implemented 
iteratively using a Stack



  

Depth-first search

A B

D E

C

F



  

Depth-first search

A B

D E

C

F

StackSet



  

Depth-first search

A B

D E

C

F

Stack

A

Set



  

Depth-first search

A B

D E

C

F

StackSet



  

Depth-first search

A B

D E

C

F

StackSet

A



  

Depth-first search

A B

D E

C

F

Stack

B

E

Set

A



  

Depth-first search

A B

D E

C

F

Stack

B

E

Set

A



  

Depth-first search

A B

D E

C

F

Stack

B

Set

A



  

Depth-first search

A B

D E

C

F

Stack

B

Set

A

E



  

Depth-first search

A B

D E

C

F

Stack

B

D

F

C

Set

A

E



  

Depth-first search

A B

D E

C

F

Stack

B

D

F

C

Set

A

E



  

Depth-first search

A B

D E

C

F

Stack

B

D

F

Set

A

E



  

Depth-first search

A B

D E

C

F

Stack

B

D

F

Set

A

E

C



  

Depth-first search

A B

D E

C

F

Stack

B

D

F

Set

A C

E

B



  

Depth-first search

A B

D E

C

F

Stack

B

D

F

Set

A C

E

B



  

Depth-first search

A B

D E

C

F

Stack

B

D

F

Set

A C

E

B



  

Depth-first search

A B

D E

C

F

Stack

B

D

F

Set

A C

E



  

Depth-first search

A B

D E

C

F

Stack

B

D

F

Set

A C

E

B



  

Depth-first search

A B

D E

C

F

Stack

B

D

F

Set

A C

E

B



  

Depth-first search

A B

D E

C

F

Stack

B

D

Set

A C

E

B



  

Depth-first search

A B

D E

C

F

Stack

B

D

Set

A C

E

B

F



  

Depth-first search

A B

D E

C

F

Stack

B

D

Set

A C

E

B

F



  

Depth-first search

A B

D E

C

F

Stack

B

Set

A C

E

B

F



  

Depth-first search

A B

D E

C

F

Stack

B

Set

A C

E

B

FD



  

Depth-first search

A B

D E

C

F

Stack

B

Set

A C

E

B

FD



  

Depth-first search

A B

D E

C

F

StackSet

A C

E

B

FD



  

Coding Depth-First Search



  

DFS and Connected 
Components

● Detecting connected components 
becomes relatively straightforward once 
we have Depth First Search.

● Not going to code it up, but I encourage 
you to!



  

Problems with DFS

● Useful when trying to explore everything.
● Not good at finding shortest paths.
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Breadth-First Search

● Specialization of the general search 
algorithm where nodes to visit are put 
into a queue.

● Explores nodes one hop away, then two 
hops away, etc.

● Finds path with fewest edges from start 
node to all other nodes.



  

Note: The following animation has been 
simplified for pedagogic purposes.  In 

reality there would be a Set keeping track 
of visited nodes and redundant adds to the 

Queue
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Next Time

● Shortest Paths
● Dijkstra's Algorithm.
● A* Search.
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