

Graphs

Announcements()
 {

Change in Schedule
● I'm changing the schedule around a bit...

● Today: Graphs
● Tuesday: Shortest Path Algorithms
● Wednesday: Minimum Spanning Trees
● Tursday: Review Session for Midterm II

Final

● Final: Monday, August 12th, 7-10pm

● Location: Cubberly Auditorium
● Cumulative (but weighted towards post midterm

material)
● Covers material up through Tuesday

– SCPD students and students who require
special arrangements should email me in the
next couple days

● We do the final “early” so we have time to grade
it, get it back to you and resolve any grading
issues.

} //Announcements

Data Structures Cheat Sheet

● Vector, Stack: dynamic array

● Queue: linked list or dynamic array

● Set, Map: Binary Search Tree

● HashSet, HashMap: Hash Table

● Lexicon: Trie

Graphs

A Social Network

http://strangemaps.files.wordpress.com/2007/02/fullinterstatemap-web.jpg

http://www.toothpastefordinner.com/

A graph is a mathematical structure
for representing relationships.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

Nodes

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

Edges

Some graphs are directed.

CAT SAT RAT

RANMAN

MAT

CAN

Some graphs are undirected.

CAT SAT RAT

RANMAN

MAT

CAN

Some graphs are undirected.

You can think of them as directed
graphs with edges both ways.

Graphs
● “Yo Teach, why are we studying graphs?”

● We study graphs because a lot of problems
can be modeled in terms of graphs

● Also, there are many off-the-shelf graph
algorithms that we apply if we're able to
formulate a problem as a graph problem.

Pathfinding

● Each intersection is a node

● Each street connecting intersections is an edge

● Find paths between intersections that minimize
distance or travel time

Content-Aware Resizing

Content-Aware Resizing

● Each pixel is a node in a graph

● Each pixel is connected to adjacent pixels

● Find paths from the top of the image to the
bottom that minimize the “energy function”

The Wikipedia Graph

● Wikipedia (and the
web in general) is
a graph!

● Each page is a
node.

● There is an edge
from one page to
another if the first
page links to the
second.

Social Networks and Epidemics

http://3278as3udzze1hdk0f2th5nf18c1.wpengine.netdna-cdn.com/wp-content/uploads/2010/09/social-networks-new-science1.jpg

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=MPB6JuYe9sdbDM&tbnid=VWbN0BtTG7-ZWM:&ved=0CAUQjRw&url=http%3A%2F%2Fblogs.cornell.edu
%2Finfo2040%2F2011%2F09%2F17%2Fhow-network-structure-can-provide-advanced-warning-about-epidemics
%2F&ei=rrP9Ufa8G6n0iwK9q4CoBQ&bvm=bv.50165853,d.cGE&psig=AFQjCNHljXC1ZggH6hQDrKxPM1CV7ocVXQ&ust=1375667391653650

How can we represent graphs in C++?

Representing Graphs

Node Connected To

Vector<Node*> Node*

Map<Node*, Vector<Node*>>
We can represent a graph as
a map from nodes to the list

of nodes each node is
connected to.

We can represent a graph as
a map from nodes to the list

of nodes each node is
connected to.

What interesting things can we do with
graphs?

Connected Components

● A connected component is a subset of the
nodes in a graph such that:

● For every pair of nodes in the subset there
exists a path between them

● No node in the subset is not connected any
node not in the subset

Connected Components

1 Connected Component

Connected Components

2 Connected Components

Connected Components

3 Connected Components

Connected Components

6 Connected Components

Connected Components

● Detecting connected components in a graph is
important because it can provide useful
insights into the structure of graph

● e.g. How do people in a community separate
themselves into separate groups.

● In order to detect connected components we
first need to be able to iterate over nodes in a
graph.

● We'll come back to connected components
later.

Iterating over a Graph

● Given a linked list, there was just one way to
traverse the list.
● Keep going forward.

● In a binary search tree, there are many traversal
strategies:

● An inorder traversal that produces all the
elements in sorted order.

● A postorder traversal used to delete all the
nodes in the BST.

● There are many ways to iterate over a graph.

Iterating over a Graph

● All methods of iterating over a graph involve
keeping track of 3 sets of nodes:

Set of Nodes already visited

Set of Nodes to look at next

Everything else

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

● All methods of iterating over a graph involve
keeping track of 3 sets of nodes:

Set of Nodes already visited

Set of Nodes to look at next

Everything else

● Methods of iterating over nodes differ in how
they choose which node to look at next

Recursive Depth First Search
● To detect connected components we just

want to see whether or not some path
exists between them (we don't care about
finding the “shortest” path).

● One way to detect connectivity would be
to just pick an arbitrary direction and
keep following it.
● When you run out of room to go in one

direction, just go back and look in a
different direction

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

Recursive Depth-First Search

● To do a depth-first search (DFS) from a
node u, do the following:
● If u is already marked, stop.
● Mark u.
● For each neighbor v of u:

– Recursively run DFS from v.

● The backtracking here is similar to the
backtracking done in standard recursion.

Iterative Depth-First Search

● DFS is most commonly implemented
iteratively using a Stack

Depth-first search

A B

D E

C

F

Depth-first search

A B

D E

C

F

StackSet

Depth-first search

A B

D E

C

F

Stack

A

Set

Depth-first search

A B

D E

C

F

StackSet

Depth-first search

A B

D E

C

F

StackSet

A

Depth-first search

A B

D E

C

F

Stack

B

E

Set

A

Depth-first search

A B

D E

C

F

Stack

B

E

Set

A

Depth-first search

A B

D E

C

F

Stack

B

Set

A

Depth-first search

A B

D E

C

F

Stack

B

Set

A

E

Depth-first search

A B

D E

C

F

Stack

B

D

F

C

Set

A

E

Depth-first search

A B

D E

C

F

Stack

B

D

F

C

Set

A

E

Depth-first search

A B

D E

C

F

Stack

B

D

F

Set

A

E

Depth-first search

A B

D E

C

F

Stack

B

D

F

Set

A

E

C

Depth-first search

A B

D E

C

F

Stack

B

D

F

Set

A C

E

B

Depth-first search

A B

D E

C

F

Stack

B

D

F

Set

A C

E

B

Depth-first search

A B

D E

C

F

Stack

B

D

F

Set

A C

E

B

Depth-first search

A B

D E

C

F

Stack

B

D

F

Set

A C

E

Depth-first search

A B

D E

C

F

Stack

B

D

F

Set

A C

E

B

Depth-first search

A B

D E

C

F

Stack

B

D

F

Set

A C

E

B

Depth-first search

A B

D E

C

F

Stack

B

D

Set

A C

E

B

Depth-first search

A B

D E

C

F

Stack

B

D

Set

A C

E

B

F

Depth-first search

A B

D E

C

F

Stack

B

D

Set

A C

E

B

F

Depth-first search

A B

D E

C

F

Stack

B

Set

A C

E

B

F

Depth-first search

A B

D E

C

F

Stack

B

Set

A C

E

B

FD

Depth-first search

A B

D E

C

F

Stack

B

Set

A C

E

B

FD

Depth-first search

A B

D E

C

F

StackSet

A C

E

B

FD

Coding Depth-First Search

DFS and Connected
Components

● Detecting connected components
becomes relatively straightforward once
we have Depth First Search.

● Not going to code it up, but I encourage
you to!

Problems with DFS

● Useful when trying to explore everything.
● Not good at finding shortest paths.

Problems with DFS

● Useful when trying to explore everything.
● Not good at finding shortest paths.

Stack

Problems with DFS

● Useful when trying to explore everything.
● Not good at finding shortest paths.

A B

Stack

Problems with DFS

● Useful when trying to explore everything.
● Not good at finding shortest paths.

A B

Stack

B

A

Breadth-First Search

1

1

1
1

2

1

1

2

2

1
2

1

2

2

2

1

1

2

2

1
2

1

2

2

Breadth-First Search

● Specialization of the general search
algorithm where nodes to visit are put
into a queue.

● Explores nodes one hop away, then two
hops away, etc.

● Finds path with fewest edges from start
node to all other nodes.

Note: The following animation has been
simplified for pedagogic purposes. In

reality there would be a Set keeping track
of visited nodes and redundant adds to the

Queue

Breadth-first search

A B

D E

C

F

Breadth-first search

A B

D E

C

F

Queue

Breadth-first search

A B

D E

C

F

Queue A

Breadth-first search

A B

D E

C

F

Queue

Breadth-first search

A B

D E

C

F

Queue B E

Breadth-first search

A B

D E

C

F

Queue B E

Breadth-first search

A B

D E

C

F

Queue E

Breadth-first search

A B

D E

C

F

Queue E C

Breadth-first search

A B

D E

C

F

Queue E C

Breadth-first search

A B

D E

C

F

Queue C

B

Breadth-first search

A B

D E

C

F

Queue C D F

B

Breadth-first search

A B

D E

C

F

Queue C D F

B

Breadth-first search

A B

D E

C

F

Queue D F

B

E

Breadth-first search

A B

D E

C

F

Queue D F

B

E

Breadth-first search

A B

D E

C

F

Queue F

B

E

C

Breadth-first search

A B

D E

C

F

Queue F

B

E

C

Breadth-first search

A B

D E

C

F

Queue

B

E

C

D

Breadth-first search

A B

D E

C

F

Queue

B

E

C

D

Coding Breadth-First Search

CAT SAT RAT

RANMAN

MAT

CAN

CAT SAT RAT

RANMAN

MAT

CAN

CAT SAT RAT

RANMAN

MAT

CAN

CAT SAT RAT

RANMAN

MAT

CAN

CAT SAT RAT

RANMAN

MAT

CAN

CAT

RANCAN

Next Time

● Shortest Paths
● Dijkstra's Algorithm.
● A* Search.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186

