Shortest Paths



Announcements

Assignment 6 going out later today

e Due Friday, June 16™at 11AM

 Requires material covered today and tomorrow
 Cannot be turned in late

Assignment 5 Due tomorrow at 11AM

Practice Exam on the website

« Links to past quarters exams on the website

Typo on Syllabus: Should be reading chapter on
Graphs (not the chapter on Inheritance)



A graph is a mathematical structure
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Problems with DFS

« Usetul when trying to explore everything.
 Not good at finding shortest paths
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Problem with BFS

* In the version of BFS we just
implemented, we don't keep track of the
paths we generate!

 There are a couple ways to fix this, but
I'm going to show you the coolest =)



Shortest Path Tree
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Breadth-First Search

This structure is called a shortest-path
tree. Notice how following the arrows
from any node will trace a shortest path
back to the root in reverse.
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Keep on Truckin'
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Pathfinding on
Weighted Graphs



BFS and Pathfinding

 Breadth-first search is good for
determining the shortest path from s to t.

« Uses a queue.

» If edges are unweighted, then return optimal
path

« What happens if the edges are
weighted?

e e.g. distance, cost of airfare



Shortest Paths

* You are given a graph where each edge
has a nonnegative weight.

* Given a starting node s, find the shortest
path (in terms of total weight) from s to
each other node t.
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Shortest Paths

* Cool fact: We can generalize BFS to work
on graphs with weighted edges

« BES returns an optimal path because it visits
nodes in order of distance from the start

Red: No idea of shortest
path 0 1 2

Green: Found shortest
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Our Approach

» Split nodes into three groups:

Green nodes, where we know the
@ length of the shortest path,

Yellow nodes, where we have a guess
of the length of the shortest path, and

Red nodes, where we have no idea
what the path length is.

 Repeatedly remove the lowest-cost
yellow node, make it green, and update
all connected nodes.







































Notice how our guess of
the path length to this
node just changed.




























Dijkstra's Algorithm

« This algorithm for finding shortest paths
is called Dijkstra's algorithm.

* One of the fastest algorithms for finding
the shortest path from s to all other
nodes in the graph.

 Can be made to run in O(e + v log v) where
v is the number of nodes and e is the number
of edges



Dijkstra's Algorithm

* Dijkstra's algorithm is guaranteed to find
the shortest paths if all the edge
weights are nonnegative

« What happens if the graph has edges
with negative weights?












The cost we finalized for
this node is not optimal!



Dijkstra's Algorithm

« Earlier I said that the edge weights have
to be nonnegative.

« What happens if the graph has edges
with negative weights?

 The algorithm won't calculate the correct
answer. More sophisticated algorithms are
required to account for negative weights.
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Dijkstra's Algorithm

 Guaranteed to find optimal paths if edges
have non-negative weights.

e Intuition for proof of this:

1) We only finalize paths to nodes if that path has
the minimum weight.

2) Since all edges have nonnegative weight, any
other path to this node will be greater than or
equal to the cost of the path built up to it at this
point in the algorithm.

3) Therefore, any other path to the node we are
finalizing will have greater cost than the path we
have built up to it.

4) QED



Implementing Dijkstra's Algorithm



The Simpler Way of Doing It

More Intuitive, Much Slower
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The MUCH Faster Way of Doing It

Also the way you're going to do it for
Assignment 6 =)
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Dijkstra's Algorithm

« Split nodes apart into three groups:

Q Green nodes, where we already have the shortest path;

Q Gray nodes, which we have never seen; and

Q Yellow nodes that we still need to process.

« Dijkstra's algorithm works as follows:

« Mark all nodes gray except the start node, which is yellow
and has cost 0.

« Until no yellow nodes remain:

Choose the yellow node with the lowest total cost.
Mark that node green.

Mark all its gray neighbors yellow and with the
appropriate cost.

Update the costs of all adjacent yellow nodes by
considering the path through the current node.



An Important Note

 The version of Dijkstra's algorithm I have
just described is not the same as the
version described in the course reader.

e This version is more complex than the
book's version, but is much faster.



Differences from BFS

« BFS uses a queue, while Dijkstra's algorithm
uses a priority queue, where priorities are
potential distances to nodes.

 Need a special operation called decrease-key,
which lowers the priority of an enqueued
element.

 BFS never changes a parent pointer once it is
set, while Dijkstra's algorithm might change
parent pointers.

» If a possible path to a node is found to be
incorrect, then its parent might change.



Dijkstra's Algorithm

« What happens if we run Dijkstra's
Algorithm on a graph where every arc
has weight 17




































Dijkstra's Algorithm

« What happens if we run Dijkstra's
Algorithm on a graph where every arc
has weight 17

e It devolves into Breadth First Search



The next slide will be really useful as a
reference, so I changed the color scheme
so that you can find it more easily.



« Mark all nodes as gray.

« Mark the initial node s as yellow and at candidate distance 0.
 Enqueue s into the priority queue.

» While not all nodes have been visited:

* Dequeue the lowest-cost node u from the priority queue.

» Color u green. The candidate distance d that is currently stored for node
is the length of the shortest path from s to

» If u is the destination node £, you have found the shortest path from s to
and are done.

* For each node v connected to u by an edge of length L:
-If v is gray:
» Color v yellow.
» Mark v's distance as d + L.
* Set v's parent to be

 Enqueue v into the priority queue.
-If v is yellow and the candidate distance to v is greater than d + L:

« Update v's candidate distance to be d + L; the older candidate distance
is incorrect.

« Update v's parent to be
« Update v's priority in the priority queue to d + L.




One Detail with Dijkstra's Algorithm
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Skipping a few steps...
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How Dijkstra's Works

» Dijkstra's algorithm works by
incrementally computing the shortest
path to intermediary nodes in the graph
in case they prove to be useful.

 Most of these nodes are completely in
the wrong direction.

 No “big-picture” conception of how to
get to the destination - the algorithm
explores outward in all directions.

* Could we give the algorithm a hint?



Heuristics

* In the context of graph searches, a
heuristic function is a function that
guesses the distance from some known
node to the destination node.

 The guess doesn't have to be correct, but
it should try to be as accurate as
possible.

 Examples: For Google Maps, a heuristic
for estimating distance might be the
straight-line distance.



Admissible Heuristics

A heuristic function is called an
admissible heuristic if it never
overestimates the distance from any
node to the destination.

* In other words:
predicted-distance = actual-distance















One possible heuristic:
Ax| + |Ay




Why Heuristics Matter

We can modify Dijkstra's algorithm by introducing
heuristic functions.

Given any node u, there are two associated costs:

B o ———-

The actual distance from the start node s.

The heuristic distance from u to the end node t.

Key idea: Run Dijkstra's algorithm, but use the
following priority in the priority queue:

priority(u) = distance(s, u) + heuristic(u, t)

This modification of Dijkstra's algorithm is called the
A* search algorithm.
























LT




:




:

1?




L

1? --




L




1 +
6?

1?

Ly

"Ul

1 +
6?










6?










6?










6?










6?












































































2 +3 +4 +
7? 6? 5°?

1 2 3












2 +3 +4 +
7? 6? 5?

3+2+3+4 +
8?2 7? 6? 5?




3 +4 +
6?2 5?2

3+2+3+4 +
8?2 7? 6? 5?




3+8?

8? .

Iy 6+4+
?

¥ 5°?

8. ;. 6. 5.
+4




3 +2 +3 +
8? 7? 67























































3 +
8?

3
+
4 + 5 +
6
+

8?

7°?

6?

5°?

3
+
4
+5 + 6
+
7
+

8?

7°?

6?

5°?

4?




3 +
8?

3
+
4 + 5 +
6
+

8?

7°?

6?

5°?

3?

¢

7 +
2?

3
+
4
+5 + 6
+
7
+

8?

7°?

6?

5°?

4?




3 +
8?

3+4+5 +6 +
8? 7? 6? 5?

3+4 +5 +6 +7 +
8?2 7? 6? 5? 4




3 +
8?

3+4+5 +6 +
8? 7? 6? 5?

3+4 +5 +6 +7 +
8?2 7? 6? 5? 4




3 +
8?

3+4+5 +6 +
8? 7? 6? 5?

3+4+5 +6+7 +8 +
8?2 7? 6? 5? 4? 3?




3 +
8?

3+4+5 +6 +
8? 7? 6? 5?

3+4+5 +6+7 +8 +
8?2 7? 6? 5? 4? 3?




3 +
8?

3+4+5 +6 +
8? 7? 6? 5?

8 +

3?
3+4+5 +6+7 +8 +

8? 7? 6? 5? 4? 3?













For Comparison: What Dijkstra's Algorithm Would Have Searched




A* Search

» As long as the heuristic is admissible
(and satisfies one other technical
condition), A* will always find the
shortest path from the source to the
destination node.

 Can be dramatically taster than Dijkstra's
algorithm.

 Focuses work in areas likely to be
productive.

« Avoids solutions that appear worse until
there is evidence they may be appropriate.



A* and Dijkstra's

» Dijkstra's algorithm and A* search are
very closely related:

* Dijkstra's uses a node's candidate distance
as its priority.

« A* uses a node's candidate distance plus a
heuristic value as its priority.

» Interesting fact: If you use the zero
heuristic (which always predicts a node
i1s at distance O from the endpoint), A*
search is completely identical to
Dijkstra's algorithm!



« Mark all nodes as gray.

» Mark the initial node s as yellow and at candidate distance 0. Dijkstra's
 Enqueue s into the priority queue with priority 0. Algorlthm

« While not all nodes have been visited:

* Dequeue the lowest-cost node u from the priority queue.

» Color u green. The candidate distance d that is currently stored for node u
is the length of the shortest path from s to wu.

 If u is the destination node £, you have found the shortest path from s to ¢
and are done.

* For each node v connected to u by an edge of length L:
-If v is gray:
» Color v yellow.
» Mark v's distance as d + L.
» Set v's parent to be u.
 Enqueue v into the priority queue with priority d + L.
-If v is yellow and the candidate distance to v is greater than d + L.:

« Update v's candidate distance to be d + L.
« Update v's parent to be u.
» Update v's priority in the priority queue tod + L.



« Mark all nodes as gray.

» Mark the initial node s as yellow and at candidate distance 0. A* Search

 Enqueue s into the priority queue with priority h(s, t).

« While not all nodes have been visited:

* Dequeue the lowest-cost node u from the priority queue.

» Color u green. The candidate distance d that is currently stored for node u
is the length of the shortest path from s to wu.

 If u is the destination node £, you have found the shortest path from s to ¢
and are done.

* For each node v connected to u by an edge of length L:
-If v is gray:
» Color v yellow.
* Mark v's distance as d + L.
» Set v's parent to be u.
 Enqueue v into the priority queue with priority d + L + h(v, £).
-If v is yellow and the candidate distance to v is greater than d + L.:
« Update v's candidate distance to be d + L.

« Update v's parent to be u.
« Update v's priority in the priority queue tod + L + h(v, 1).
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