Shortest Paths

Announcements

Assignment 6 going out later today

e Due Friday, June 16™at 11AM

 Requires material covered today and tomorrow
 Cannot be turned in late

Assignment 5 Due tomorrow at 11AM

Practice Exam on the website

« Links to past quarters exams on the website

Typo on Syllabus: Should be reading chapter on
Graphs (not the chapter on Inheritance)

A graph is a mathematical structure
for representing relationships.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

A

A

<_| Edges |_—>

vl

V

A graph consists of a set of nodes
connected by edges.

Depth-First Search

Depth-first search

A B C

Depth-first search

Stack

Depth-first search

Stack

Depth-first search

Stack

Depth-first search

Stack

Depth-first search

Stack

Depth-first search

Stack

Depth-first search

Stack

Depth-first search

Stack

Depth-first search

Stack

Depth-first search

Stack

Depth-first search

Stack

Depth-first search

Stack

Depth-first search

Stack

Depth-first search

Stack

Depth-first search

Stack

Depth-first search

Stack

Depth-first search

Stack

Depth-first search

A

C

=)

Stack

Depth-first search

A

C

=)

Stack

Depth-first search

A

C

=)

Stack

Depth-first search

Stack

Depth-first search

Stack

Depth-first search

Stack

Depth-first search

Stack

Depth-first search

Stack

Problems with DFS

« Usetul when trying to explore everything.
 Not good at finding shortest paths

o—&—490 e

Stack

Breadth-First Search

Breadth-first search

Breadth-first search

Queue

Breadth-first search

Queue A

Breadth-first search

Queue

Breadth-first search

ame @ @

Breadth-first search

ame @ @

Breadth-first search

Queue G

Breadth-first search

ame @ O

Breadth-first search

ame @ O

Breadth-first search

Queue e

Breadth-first search

e @O @

Breadth-first search

e @O @

Breadth-first search

X

Breadth-first search

X

Breadth-first search

()
A B

D) (E) ()

Queue G

Breadth-first search

()
A B

) (E) ()

Queue G

Breadth-first search

Queue

Breadth-first search

Queue

Problem with BFS

* In the version of BFS we just
implemented, we don't keep track of the
paths we generate!

 There are a couple ways to fix this, but
I'm going to show you the coolest =)

Shortest Path Tree

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

This structure is called a shortest-path
tree. Notice how following the arrows
from any node will trace a shortest path
back to the root in reverse.

Extending Graphs

San Fra

isco; CA

Flights

Minneap

Dallas,

DC

San Fra

isco; CA

777Tmi

Flights

Minneap

2200mi

1540mi

60

935mi

Dallas,

1319mi

DC

Karel Goes Ice Skating

(This graph is called

down, 20% left, 20%
a Markov model) right, 20% down, 20%
right, 80% @
) —
left, 80%
2 | |
1 \ . up, 80% down, 80% up, 80% down, 80%
1 2 right, 80%
@ left, 80%
right, 20% left, 20%

up, 20% up, 20%

Keep on Truckin'

1 OI 6” 1 1 1 6” 9! 9”

1 2' 8” 1 2' 6” 1 1 1 8” 1 OI 9”
1 OI 8” 1 OI 4” 1 1 1 O”

1 Ol 8” 1 OI 6” 1 1 1 2” 9! 6”

1 Ol 5” 1 OI 3” 1 1 1 2”

Pathfinding on
Weighted Graphs

BFS and Pathfinding

 Breadth-first search is good for
determining the shortest path from s to t.

« Uses a queue.

» If edges are unweighted, then return optimal
path

« What happens if the edges are
weighted?

e e.g. distance, cost of airfare

Shortest Paths

* You are given a graph where each edge
has a nonnegative weight.

* Given a starting node s, find the shortest
path (in terms of total weight) from s to
each other node t.

Fal0 Ao

% Menlo Oaks b, 4 3
SR N
International £ e +
\\E z ﬁ@m e | PaloAite "
Airport of Santa
M&nln Park £ : Crescant " Clara County
~ Fark b
Downtown { Downtown 1 Duveneck - S
Menlo Park , North St Francis #ar
e : Community =7
f@ '. H"«._H ; E-E'n-ter {)
E NS Lemnd TAgEEl g Beer Park
e L e
g f *»,;R"“- F'aiu Alto Mird 8
B P
o $ ﬁf‘v Old Palo
/ ' '%0 Alta
rk f %, % S
-. ~_ Stanford € . i
J - Pniversity -E' : Wl dgunian
o | i'l . -_'. I..é ' f i L'.h'f-i Fark
A s Stanfordy’ g
:f Hiliar?\ g S %"’@ Charleston Mgyl Google
y bk g : Gardens
3l ; & i |
e anford %, Charleston iy
o Weekend Acres % = : Meadow Greenmeadow gy, e wﬂ:r__ |
By Ly & .
fa% ‘ﬁ'&' s -
qég VA Palo Alto Q!?%a-p
Health System 5 %
H ;
. ;%

S,

Greater

[T et

[T T

Shortest Paths

* Cool fact: We can generalize BFS to work
on graphs with weighted edges

« BES returns an optimal path because it visits
nodes in order of distance from the start

Shortest Paths

* Cool fact: We can generalize BFS to work
on graphs with weighted edges

« BES returns an optimal path because it visits
nodes in order of distance from the start

Red: No idea of shortest
path A B C

Green: Found shortest

! path

o Yellow: Guess for shortest

~ path
D E F

Shortest Paths

* Cool fact: We can generalize BFS to work
on graphs with weighted edges

« BES returns an optimal path because it visits
nodes in order of distance from the start

Red: No idea of shortest

path 7 o m

Green: Found shortest

! path

o Yellow: Guess for shortest

2 path

Shortest Paths

* Cool fact: We can generalize BFS to work
on graphs with weighted edges

« BES returns an optimal path because it visits
nodes in order of distance from the start

Red: No idea of shortest

© @ @

Green: Found shortest

! path

o Yellow: Guess for shortest

2 path

Shortest Paths

* Cool fact: We can generalize BFS to work
on graphs with weighted edges

« BES returns an optimal path because it visits
nodes in order of distance from the start

Red: No idea of shortest

56 ® ®

Green: Found shortest

! path

o Yellow: Guess for shortest

2 path

Shortest Paths

* Cool fact: We can generalize BFS to work
on graphs with weighted edges

« BES returns an optimal path because it visits
nodes in order of distance from the start

Red: No idea of shortest

path 0 1? ‘

Green: Found shortest

! path

o Yellow: Guess for shortest

2 path
” 17 ”

Shortest Paths

* Cool fact: We can generalize BFS to work
on graphs with weighted edges

« BES returns an optimal path because it visits
nodes in order of distance from the start

Red: No idea of shortest

path 0 1 ‘

Green: Found shortest

! path

o Yellow: Guess for shortest

2 path
” 17 ”

Shortest Paths

* Cool fact: We can generalize BFS to work
on graphs with weighted edges

« BES returns an optimal path because it visits
nodes in order of distance from the start

Red: No idea of shortest

path 0 1 27
v Green: Found shortest
path

o Yellow: Guess for shortest

2 path
” 17 ”

Shortest Paths

* Cool fact: We can generalize BFS to work
on graphs with weighted edges

« BES returns an optimal path because it visits
nodes in order of distance from the start

Red: No idea of shortest

path 0 1 27
v Green: Found shortest
path

o Yellow: Guess for shortest

2 path
” ! ”

Shortest Paths

* Cool fact: We can generalize BFS to work
on graphs with weighted edges

« BES returns an optimal path because it visits
nodes in order of distance from the start

Red: No idea of shortest
path 0 1 27

Green: Found shortest

! path

o Yellow: Guess for shortest

~ path
27 1 27

Shortest Paths

* Cool fact: We can generalize BFS to work
on graphs with weighted edges

« BES returns an optimal path because it visits
nodes in order of distance from the start

Red: No idea of shortest
path 0 1 2

Green: Found shortest

! path

o Yellow: Guess for shortest

~ path
2 1 2

Our Approach

» Split nodes into three groups:

Green nodes, where we know the
@ length of the shortest path,

Yellow nodes, where we have a guess
of the length of the shortest path, and

Red nodes, where we have no idea
what the path length is.

 Repeatedly remove the lowest-cost
yellow node, make it green, and update
all connected nodes.

Notice how our guess of
the path length to this
node just changed.

Dijkstra's Algorithm

« This algorithm for finding shortest paths
is called Dijkstra's algorithm.

* One of the fastest algorithms for finding
the shortest path from s to all other
nodes in the graph.

 Can be made to run in O(e + v log v) where
v is the number of nodes and e is the number
of edges

Dijkstra's Algorithm

* Dijkstra's algorithm is guaranteed to find
the shortest paths if all the edge
weights are nonnegative

« What happens if the graph has edges
with negative weights?

The cost we finalized for
this node is not optimal!

Dijkstra's Algorithm

« Earlier I said that the edge weights have
to be nonnegative.

« What happens if the graph has edges
with negative weights?

 The algorithm won't calculate the correct
answer. More sophisticated algorithms are
required to account for negative weights.

Dijkstra's Algorithm

 Guaranteed to find optimal paths if edges
have non-negative weights.

e Intuition for proof of this:

Dijkstra's Algorithm

 Guaranteed to find optimal paths if edges
have non-negative weights.
e Intuition for proof of this:

1) We only finalize paths to nodes if that path has
the minimum weight.

Dijkstra's Algorithm

 Guaranteed to find optimal paths if edges
have non-negative weights.

e Intuition for proof of this:

1) We only finalize paths to nodes if that path has
the minimum weight.

2) Since all edges have nonnegative weight, any
other path to this node will be greater than or
equal to the cost of the path built up to it at this
point in the algorithm.

Dijkstra's Algorithm

 Guaranteed to find optimal paths if edges
have non-negative weights.

e Intuition for proof of this:

1) We only finalize paths to nodes if that path has
the minimum weight.

2) Since all edges have nonnegative weight, any
other path to this node will be greater than or
equal to the cost of the path built up to it at this
point in the algorithm.

3) Therefore, any other path to the node we are
finalizing will have greater cost than the path we
have built up to it.

Dijkstra's Algorithm

 Guaranteed to find optimal paths if edges
have non-negative weights.

e Intuition for proof of this:

1) We only finalize paths to nodes if that path has
the minimum weight.

2) Since all edges have nonnegative weight, any
other path to this node will be greater than or
equal to the cost of the path built up to it at this
point in the algorithm.

3) Therefore, any other path to the node we are
finalizing will have greater cost than the path we
have built up to it.

4) QED

Implementing Dijkstra's Algorithm

The Simpler Way of Doing It

More Intuitive, Much Slower

(0) A

(0) A

(5) A—B

(8) A—D

(0)A

(0) A

(5) A—B

(0) A

(5) A—B

(8) A—D

(11) A—-B—C

(7) A-B—E

(0) A

(5) A—B

(7) A-B—E

(8) A—D

(11) A—-B—C

(0)A

(5) A—B

(11) A—-B—C

(0) A

(5) A—B

(7) A-B—E

(8) A—D

(11) A—-B—C

(0) A

(5) A—B

(7) A-B—E

(8) A—D
(11) A>B—C

(8) A-B—E—F
(13) A-B—E—H

(0) A

(5) A—B

(7) A-B—E

(8) A—D

(8) A-B—E—F
(11) A—-»B—-C
(13) A-B—E—H

(0)A

(5) A—B

(7) A—-B—E

(8) A-B—E—F

(11) A—-B—C
(13) A-B—E—H

(0) A

(5) A—B

(7) A-B—E

(8) A—D

(8) A-B—E—F

(11) A—-B—C
(13) A-B—E—H

(8) A-B—E—F

(11) A>B—C

(13) A-B—E—H

(9) A-D—G

(11) A->D—H

(8) A-B—E—F

(9) A>D—G

(11) A>B—C

(11) A->D—H

(13) A-B—E—H

(0)A

(5) A—B

(7) A—-B—E

(8) A—D

(9) A>D—G

(11) A—-B—C
(11) A—-D—H
(13) A-B—E—H

(0

(5) A>B

(8) A—D

) A
)
(7) A-B—E
)
)

(8) A-B—E—F

(9) A—-D—-G
(11) A—-B—C
(11) A—-»D—H
(13) A-B—E—H

(9) A-D—G

(11) A>B—C

(11) A->D—H

(13) A-B—E—H

(9) A-B—E—F

N
7

(10) A= B—E—F—-C

(9) A-D—G

(9) A->B—E—F—I

(10) A= B—E—F—-C

(11) A»B—C

)
(11) A—-D—H
(13) A-B—E—H

(0)A

(5) A—B

(7) A—-B—E

(8) A—D

(8) A-B—E—F

(9) A-B—E—F—I

(10) A= B—E—F—-C

(11) A—-B—C

(11) A->D—H

(13) A-B—E—H

(9) A-B—E—F

N
7

(10) A= B—E—F—-C

(11) A»B—C

)
(11) A->D—H
)

(13) A~ B—E—H

(9) A-B—E—F

N
7

(10) A= B—E—F—-C

(11) A»B—C

)
(11) A->D—H
)

(13) A~ B—E—H

(10) A~ D—-G—H

(9) A-B—E—F

N
7

(10) A= B—E—F—-C

(10) A~ D—-G—H

(11) A»B—C

(11) A—-»D—H

)
)
)
)

(13) A~ B—E—H

(0)A

(5) A—B

(7) A—-B—E

(8) A—D

(8) A-B—E—F

(9) A-D—G

(10) A= B—E—F—-C

(10) A~ D—-G—H

(11) A—-B—C

(11) A->D—H

(13) A-B—E—H

(10) A B—-E—-F—-C

(10) A~ D—-G—H

(11) A—-»D—H

)
)
(11) A—»B—C
)
)

(13) A~ B—E—H

(10) A B—-E—-F—-C

(10) A~ D—-G—H

(11) A—-»D—H

)
)
(11) A—»B—C
)
)

(13) A~ B—E—H

(11) A-B—E—F

N
7

>H

(10

sBoE—>F—C

(10

(11

A
A—-D—-G—H
A—-B—C

(11

A—D—H

(11

»B—oE—F—I|

>H

(13

N | N | SN | SN | N | N

A
A—-B—-E—H

(0) A

(5) A—B

(7) A-B—E

(8) A—D

(8) A-B—E—F

(9) A>D—G

(9) A-B—E—F—I

(10) A-D—-G—H

(11) A—-B—C

(11) A->D—H

(11) A-B—-E—F—Il—H

(13) A-B—E—H

(0

(5) A>B

(7) A-B—E

(8) A—D

(9) A—-D—-G

(9) A-B—E—F—I

) A
)
)
)
(8) A-B—E—F
)
)
0

(10) A= B—E—F—-C

(10) A~ D—-G—H

(11) A»B—C

N
7

(11) A-B—E—F

>H

)
)
(11) A—-»D—H
)
)

(13) A~ B—E—H

(11) A—-B—C

(11) A—»D—H
(11) A-B—-E—F—Il—H
(13) A~ B—E—H

(9) A-B—E—F—I

(10) A= B—E—F—-C

(10) A~ D—-G—H

(11

A—-B—C

(11

A—D—H

(11

A—-B—-E—F

N
7

>H

(13

~_ |~ | SN~ | N~

A—-B—-E—H

(11
(11;2_)[)
(13 - :
)A—>B_)
B—)IIEE_)F
—> _)I
H -

6 2
5 1
2
1
(11) A-B—-E—F—Il—H

(13) A~ B—E—H

(13
) A—B
s
E—
H

The MUCH Faster Way of Doing It

Also the way you're going to do it for
Assignment 6 =)

1
E
4

O i

o

o L
AN N 1 7

™M r~

6 E
i <

U F -
< I . O
™M r~ L0

4

1

3

1
4
H

E wy .
</ N

3
7

b
1
2

E wy .
</ N

3
7

b
1
2

- -
\ \
—~y i r~ 1

3
7

- -
\ \
—~y i r~ 1

3
7

- -
\ \
—~y i r~ 1

- -
\ \
—~y i r~ 1

- -
\ \
—~y i r~ 1

3
7

- -
\ \
—~y i r~ 1

3
7

@ L O

T
-
" , | - /\
1

T
-
" , | - /\
1

T
-
" , | - /\
1

6 @
s # 5

‘A . ‘n 3

LN

L Y B
— ~ @

, f@

m m
“ “
“ “
oF 0 ;
" "

T i
m
“
"
™

m m
“ “
“ “
oF 0 ;
" "

T i
m
“
"
™

. f@

o . O

& f@

PP ey

EEEL
GG

e

PP ey

vE e -
7 &

& f@

PP ey

Vi BB
7 &

& f@

PP ey

o5 o8 -5 3
GG

e

PP ey

o5 o8 -5 3

m m
“ “
“ “
oF 0 ;
" "

T i
m
“
"
™

n A=Y n.
COO L. i - M
< ~
i i i r~ 1
™ oF 0 ;

Q) @ Ry @
“ m m
: :
: :
=~ bl
- -

™

Q) @ Ry @
“ m m
: :
: :
=~ bl
- -

™

o5 -5 -3

o5 -5 -3

o5 w5 -3

-5 o5 -2

-5 o5 -2

5 o8 -5
¢ .5

-5 o5 -2

Dijkstra's Algorithm

« Split nodes apart into three groups:

Q Green nodes, where we already have the shortest path;

Q Gray nodes, which we have never seen; and

Q Yellow nodes that we still need to process.

« Dijkstra's algorithm works as follows:

« Mark all nodes gray except the start node, which is yellow
and has cost 0.

« Until no yellow nodes remain:

Choose the yellow node with the lowest total cost.
Mark that node green.

Mark all its gray neighbors yellow and with the
appropriate cost.

Update the costs of all adjacent yellow nodes by
considering the path through the current node.

An Important Note

 The version of Dijkstra's algorithm I have
just described is not the same as the
version described in the course reader.

e This version is more complex than the
book's version, but is much faster.

Differences from BFS

« BFS uses a queue, while Dijkstra's algorithm
uses a priority queue, where priorities are
potential distances to nodes.

 Need a special operation called decrease-key,
which lowers the priority of an enqueued
element.

 BFS never changes a parent pointer once it is
set, while Dijkstra's algorithm might change
parent pointers.

» If a possible path to a node is found to be
incorrect, then its parent might change.

Dijkstra's Algorithm

« What happens if we run Dijkstra's
Algorithm on a graph where every arc
has weight 17

Dijkstra's Algorithm

« What happens if we run Dijkstra's
Algorithm on a graph where every arc
has weight 17

e It devolves into Breadth First Search

The next slide will be really useful as a
reference, so I changed the color scheme
so that you can find it more easily.

« Mark all nodes as gray.

« Mark the initial node s as yellow and at candidate distance 0.
 Enqueue s into the priority queue.

» While not all nodes have been visited:

* Dequeue the lowest-cost node u from the priority queue.

» Color u green. The candidate distance d that is currently stored for node
is the length of the shortest path from s to

» If u is the destination node £, you have found the shortest path from s to
and are done.

* For each node v connected to u by an edge of length L:
-If v is gray:
» Color v yellow.
» Mark v's distance as d + L.
* Set v's parent to be

 Enqueue v into the priority queue.
-If v is yellow and the candidate distance to v is greater than d + L:

« Update v's candidate distance to be d + L; the older candidate distance
is incorrect.

« Update v's parent to be
« Update v's priority in the priority queue to d + L.

One Detail with Dijkstra's Algorithm

1?

1?

1?

1?

1?

1?

1?

2?

Skipping a few steps...

5?

6? 5?

5? 6?

5°?

6?

How Dijkstra's Works

» Dijkstra's algorithm works by
incrementally computing the shortest
path to intermediary nodes in the graph
in case they prove to be useful.

 Most of these nodes are completely in
the wrong direction.

 No “big-picture” conception of how to
get to the destination - the algorithm
explores outward in all directions.

* Could we give the algorithm a hint?

Heuristics

* In the context of graph searches, a
heuristic function is a function that
guesses the distance from some known
node to the destination node.

 The guess doesn't have to be correct, but
it should try to be as accurate as
possible.

 Examples: For Google Maps, a heuristic
for estimating distance might be the
straight-line distance.

Admissible Heuristics

A heuristic function is called an
admissible heuristic if it never
overestimates the distance from any
node to the destination.

* In other words:
predicted-distance = actual-distance

One possible heuristic:
Ax| + |Ay

Why Heuristics Matter

We can modify Dijkstra's algorithm by introducing
heuristic functions.

Given any node u, there are two associated costs:

B o ———-

The actual distance from the start node s.

The heuristic distance from u to the end node t.

Key idea: Run Dijkstra's algorithm, but use the
following priority in the priority queue:

priority(u) = distance(s, u) + heuristic(u, t)

This modification of Dijkstra's algorithm is called the
A* search algorithm.

LT

:

:

1?

L

1? --

L

1 +
6?

1?

Ly

"Ul

1 +
6?

6?

6?

6?

6?

2 +3 +4 +
7? 6? 5°?

1 2 3

2 +3 +4 +
7? 6? 5?

3+2+3+4 +
8?2 7? 6? 5?

3 +4 +
6?2 5?2

3+2+3+4 +
8?2 7? 6? 5?

3+8?

8? .

Iy 6+4+
?

¥ 5°?

8. ;. 6. 5.
+4

3 +2 +3 +
8? 7? 67

3 +
8?

3
+
4 + 5 +
6
+

8?

7°?

6?

5°?

3
+
4
+5 + 6
+
7
+

8?

7°?

6?

5°?

4?

3 +
8?

3
+
4 + 5 +
6
+

8?

7°?

6?

5°?

3?

¢

7 +
2?

3
+
4
+5 + 6
+
7
+

8?

7°?

6?

5°?

4?

3 +
8?

3+4+5 +6 +
8? 7? 6? 5?

3+4 +5 +6 +7 +
8?2 7? 6? 5? 4

3 +
8?

3+4+5 +6 +
8? 7? 6? 5?

3+4 +5 +6 +7 +
8?2 7? 6? 5? 4

3 +
8?

3+4+5 +6 +
8? 7? 6? 5?

3+4+5 +6+7 +8 +
8?2 7? 6? 5? 4? 3?

3 +
8?

3+4+5 +6 +
8? 7? 6? 5?

3+4+5 +6+7 +8 +
8?2 7? 6? 5? 4? 3?

3 +
8?

3+4+5 +6 +
8? 7? 6? 5?

8 +

3?
3+4+5 +6+7 +8 +

8? 7? 6? 5? 4? 3?

For Comparison: What Dijkstra's Algorithm Would Have Searched

A* Search

» As long as the heuristic is admissible
(and satisfies one other technical
condition), A* will always find the
shortest path from the source to the
destination node.

 Can be dramatically taster than Dijkstra's
algorithm.

 Focuses work in areas likely to be
productive.

« Avoids solutions that appear worse until
there is evidence they may be appropriate.

A* and Dijkstra's

» Dijkstra's algorithm and A* search are
very closely related:

* Dijkstra's uses a node's candidate distance
as its priority.

« A* uses a node's candidate distance plus a
heuristic value as its priority.

» Interesting fact: If you use the zero
heuristic (which always predicts a node
i1s at distance O from the endpoint), A*
search is completely identical to
Dijkstra's algorithm!

« Mark all nodes as gray.

» Mark the initial node s as yellow and at candidate distance 0. Dijkstra's
 Enqueue s into the priority queue with priority 0. Algorlthm

« While not all nodes have been visited:

* Dequeue the lowest-cost node u from the priority queue.

» Color u green. The candidate distance d that is currently stored for node u
is the length of the shortest path from s to wu.

 If u is the destination node £, you have found the shortest path from s to ¢
and are done.

* For each node v connected to u by an edge of length L:
-If v is gray:
» Color v yellow.
» Mark v's distance as d + L.
» Set v's parent to be u.
 Enqueue v into the priority queue with priority d + L.
-If v is yellow and the candidate distance to v is greater than d + L.:

« Update v's candidate distance to be d + L.
« Update v's parent to be u.
» Update v's priority in the priority queue tod + L.

« Mark all nodes as gray.

» Mark the initial node s as yellow and at candidate distance 0. A* Search

 Enqueue s into the priority queue with priority h(s, t).

« While not all nodes have been visited:

* Dequeue the lowest-cost node u from the priority queue.

» Color u green. The candidate distance d that is currently stored for node u
is the length of the shortest path from s to wu.

 If u is the destination node £, you have found the shortest path from s to ¢
and are done.

* For each node v connected to u by an edge of length L:
-If v is gray:
» Color v yellow.
* Mark v's distance as d + L.
» Set v's parent to be u.
 Enqueue v into the priority queue with priority d + L + h(v, £).
-If v is yellow and the candidate distance to v is greater than d + L.:
« Update v's candidate distance to be d + L.

« Update v's parent to be u.
« Update v's priority in the priority queue tod + L + h(v, 1).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299
	Slide 300
	Slide 301
	Slide 302
	Slide 303
	Slide 304
	Slide 305
	Slide 306
	Slide 307
	Slide 308
	Slide 309
	Slide 310
	Slide 311
	Slide 312
	Slide 313
	Slide 314
	Slide 315
	Slide 316
	Slide 317
	Slide 318
	Slide 319
	Slide 320
	Slide 321
	Slide 322
	Slide 323
	Slide 324
	Slide 325
	Slide 326
	Slide 327
	Slide 328
	Slide 329
	Slide 330
	Slide 331
	Slide 332
	Slide 333
	Slide 334
	Slide 335
	Slide 336
	Slide 337
	Slide 338
	Slide 339
	Slide 340
	Slide 341
	Slide 342
	Slide 343
	Slide 344
	Slide 345
	Slide 346
	Slide 347
	Slide 348
	Slide 349
	Slide 350
	Slide 351
	Slide 352
	Slide 353
	Slide 354
	Slide 355
	Slide 356
	Slide 357
	Slide 358
	Slide 359
	Slide 360
	Slide 361
	Slide 362
	Slide 363
	Slide 364
	Slide 365
	Slide 366
	Slide 367
	Slide 368
	Slide 369
	Slide 370
	Slide 371
	Slide 372
	Slide 373
	Slide 374
	Slide 375
	Slide 376
	Slide 377
	Slide 378
	Slide 379
	Slide 380
	Slide 381
	Slide 382
	Slide 383
	Slide 384
	Slide 385
	Slide 386
	Slide 387
	Slide 388
	Slide 389
	Slide 390
	Slide 391
	Slide 392
	Slide 393
	Slide 394
	Slide 395
	Slide 396
	Slide 397
	Slide 398
	Slide 399
	Slide 400
	Slide 401
	Slide 402
	Slide 403
	Slide 404
	Slide 405
	Slide 406
	Slide 407
	Slide 408
	Slide 409
	Slide 410
	Slide 411
	Slide 412
	Slide 413
	Slide 414
	Slide 415
	Slide 416
	Slide 417

