Minimum Spanning Trees

We now know how to compute the minimum cost path from a start node to every other node in a graph.

What other interesting problems can we solve using graphs?

Constructing a Network

Constructing a Network

Constructing a Network

Cycle

A cycle in an undirected graph is a path that starts and ends at the same node.

Spanning Trees

A spanning tree in an undirected graph is a set of edges, with no cycles, that connects all nodes.

A minimum spanning tree (or MST) is a spanning tree with the least total cost.

Applications

Electric Grids

- Given a collection of houses, where do you lay wires to connect all houses with the least total cost?
- This was the initial motivation for studying minimum spanning trees in the early 1920's. (work done by Czech mathematician Otakar Borůvka)

Data Clustering

More on that later...

Maze Generation

More on that later...

Kruskal's Algorithm

- **Kruskal's algorithm** is an efficient algorithm for finding minimum spanning trees.
- Idea is as follows:
 - Remove all edges from the graph.
 - Place all edges into a priority queue based on their length.
 - While the priority queue is not empty:
 - Dequeue an edge from the priority queue.
 - If the endpoints of the edge aren't already connected to one another, add in that edge.
 - Otherwise, skip the edge.

Very simple algorithm, tricky proof that it produces a Minimal Spanning Tree

Maintaining Connectivity

- The key step in Kruskal's algorithm is determining whether the two endpoints of an edge are already connected to one another.
- Typical approach: break the nodes apart into clusters.
 - Initially, each node is in its own cluster.
 - Whenever an edge is added, the clusters for the endpoints are merged together into a new cluster.

Kruskal's with Clusters

- Place every node into its own cluster.
- Place all edges into a priority queue.
- While there are two or more clusters remaining:
 - Dequeue an edge from the priority queue.
 - If its endpoints are not in the same cluster:
 - Merge the clusters containing the endpoints.
 - Add the edge to the resulting spanning tree.
- Return the resulting spanning tree.

Kruskal's with Clusters

- Specialized data structures exist for maintaining the clusters in Kruskal's algorithm.
- One such structure: disjoint-set forest.
 - Not particularly complicated.
 - Check Wikipedia for details.
 - Easy extra credit on the last assignment (details in a bit.)

Applications of Kruskal's Algorithm

- Given a set of points, break those points apart into clusters.
- Immensely useful across all disciplines:
 - Cluster individuals by phenotype to try to determine what genes influence which traits.
 - Cluster images by pixel color to identify objects in pictures.
 - Cluster essays by various features to see how students learn to write.

Data Clustering

What makes a clustering "good?"

- Maximum-separation clustering tries to find a clustering that maximizes the separation between different clusters.
- Specifically: Maximize the minimum distance between any two points of different clusters.
- Very good on many data sets, though not always ideal.

- It is extremely easy to adopt Kruskal's algorithm to produce a maximum-separation set of clusters.
 - Suppose you want *k* clusters.
 - Given the data set, add an edge from each node to each other node whose length depends on their similarity.
 - Run Kruskal's algorithm until only k clusters remain.
 - The pieces of the graph that have been linked together are *k* maximally-separated clusters.

Other Cool Graph Problems

Graph Coloring

- Given a graph G, assign **colors** to the nodes so that no edge has endpoints of the same color.
- The chromatic number of a graph is the fewest number of colors needed to color it.

Graph Coloring

Graph Coloring is **Hard**.

- No efficient algorithms are known for determining whether a graph can be colored with k colors for any k > 2.
- Want \$1,000,000? Find a polynomialtime algorithm or prove that none exists.

Minimum Cut

Probabilistic Graphical Models

http://philosophy.hku.hk/think/sci/causal-net-1.jpg

Summary of Graphs

- Graphs are an enormously flexible framework for encoding relationships between structures.
- MANY uses for graphs
- Want to learn more? Take CS161!