Minimum Spanning Irees



We now know how to compute the
minimum cost path from a start node to
every other node in a graph.

What other interesting problems can we
solve using graphs?



Constructing a Network
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Constructing a Network




Cycle



A cycle in an undirected
graph is a path that starts
and ends at the same node.
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Spanning Trees



A spanning tree in an undirected
graph is a set of edges, with
no cycles, that connects all nodes.















A minimum spanning tree (or MST) is a
spanning tree with the least total cost.



Applications

« Electric Grids

« Given a collection of houses, where do you lay wires
to connect all houses with the least total cost?

« This was the initial motivation for studying minimum
spanning trees in the early 1920's. (work done by
Czech mathematician Otakar Boruvka)

 Data Clustering

e More on that later...
« Maze Generation

e More on that later...



Kruskal's Algorithm

 Kruskal's algorithm is an efficient algorithm
for finding minimum spanning trees.

 Idea is as follows:

 Remove all edges from the graph.

» Place all edges into a priority queue based on
their length.

 While the priority queue is not empty:

- Dequeue an edge from the priority queue.

- If the endpoints of the edge aren't already connected
to one another, add in that edge.

- Otherwise, skip the edge.
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A graph can have many (R4
minimum spanning trees. L
Here, the choice of which Re
length-4 edge we visit first -
leads to different results. Q—-------
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Very simple algorithm, tricky proof that it
produces a Minimal Spanning Tree



Maintaining Connectivity

 The key step in Kruskal's algorithm is
determining whether the two endpoints
of an edge are already connected to one
another.

« Typical approach: break the nodes apart
into clusters.

 Initially, each node is in its own cluster.

« Whenever an edge is added, the clusters for
the endpoints are merged together into a
new cluster.
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Kruskal's with Clusters

Place every node into its own cluster.

Place all edges into a priority queue.

While there are two or more clusters remaining:
 Dequeue an edge from the priority queue.

« If its endpoints are not in the same cluster:

- Merge the clusters containing the endpoints.
- Add the edge to the resulting spanning tree.
Return the resulting spanning tree.



Kruskal's with Clusters

« Specialized data structures exist for
maintaining the clusters in Kruskal's
algorithm.

* One such structure: disjoint-set forest.

« Not particularly complicated.
 Check Wikipedia for detalils.

« Easy extra credit on the last assignment
(details in a bit.)



Applications of Kruskal's Algorithm



Data Clustering
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Data Clustering
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Data Clustering

« Given a set of points, break those points
apart into clusters.

 Immensely useful across all disciplines:

* Cluster individuals by phenotype to try to
determine what genes influence which traits.

« Cluster images by pixel color to identify
objects in pictures.

« Cluster essays by various features to see
how students learn to write.



Data Clustering
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Data Clustering
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Data Clustering
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What makes a clustering “good?”



Maximum-Separation Clustering

« Maximum-separation clustering tries
to find a clustering that maximizes the
separation between different clusters.

« Specifically: Maximize the minimum
distance between any two points of
different clusters.

* Very good on many data sets, though not
always ideal.



Maximum-Separation Clustering
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Maximum-Separation Clustering
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Maximum-Separation Clustering

It is extremely easy to adopt Kruskal's
algorithm to produce a maximum-separation
set of clusters.

 Suppose you want k clusters.

* Given the data set, add an edge from each node
to each other node whose length depends on
their similarity.

 Run Kruskal's algorithm until only k clusters
remain.

 The pieces of the graph that have been linked
together are k maximally-separated clusters.



Maximum-Separation Clustering
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Maximum-Separation Clustering
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Mazes with Kruskal's Algorithm



Mazes with Kruskal's Algorithm
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Mazes with Kruskal's Algorithm
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Mazes with Kruskal's Algorithm
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Mazes with Kruskal's Algorithm
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Mazes with Kruskal's Algorithm
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Other Cool Graph Problems



Graph Coloring

« Given a graph G, assign colors to the nodes so
that no edge has endpoints of the same color.

 The chromatic number of a graph is the
fewest number of colors needed to color it.
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Graph Coloring is Useful
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Graph Coloring is Useful
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Graph Coloring is Useful




Graph Coloring is Hard.

* No efficient algorithms are known for
determining whether a graph can be
colored with k colors for any k > 2.

« Want $1,000,000? Find a polynomial-
time algorithm or prove that none
exists.



Minimum Cut




Probabilistic Graphical Models

Traffic
accident
Long
queues

Getting

up late
Late for
school




Summary of Graphs

 Graphs are an enormously flexible framework
for encoding relationships between structures.

« MANY uses for graphs
 Want to learn more? Take CS161!
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