

Limits of What
Computers Can Do

Announcements

● Assignment 6 due Friday at 11AM
● Cannot be turned in late!

● Regular Office Hours today
● Extended Office Hours this Week

● Wednesday, Thursday: Noon-5PM

● Graded midterms will be returned
tomorrow (Wednesday)

● Please fill out course evaluations!

Limits of Programs

● We've spent a lot of time going over cool
stuff computers can do
● Quickly Sorting, Searching

– Binary Search, Quicksort
● Quickly storing and retrieving data

– Hashing, Binary Search Trees

● An interesting question to consider is
what can't computers do

Limits of Programs

● There are three I want to consider:
● What can't a computer do any faster?
● What can't a computer do fast?
● What can't a computer do at all?

Limits of Programs

● There are three I want to consider:
● What can't a computer do any faster?
● What can't a computer do fast?
● What can't a computer do at all?

Lower Bounds on Sorting

● Run times of various sorting algorithms:
● QuickSort: O(n log n)
● MergeSort: O(n log n)
● HeapSort: O(n log n)
● SmoothSort: O(n log n)

…

● Notice a pattern?

All of our fast sorting algorithms
run in O(n log n) – what's up with that?

Lower Bounds on Sorting

● I haven't been holding back – we don't
have any general-purpose sorting
algorithms that are asymptotically faster
than O(n log n).

● In fact, we can prove that we can't do
any better (for general purpose
algorithms).

● In order to do this we need to find what
all our sorting algorithms have in
common...

 9

An Initial Idea: Selection Sort

721 64

 10

Another Idea: Insertion Sort

7 2 1 64

 11

The Key Insight: Merge

10874 9653

1 2

Lower Bounds on Sorting

● Observation: All our sorting algorithms
involve repeatedly comparing pairs of
elements in the array

● One way of measuring the amount of
work our sorting algorithms do is by
counting how many comparisons are
performed

 13

An Initial Idea: Selection Sort

721 64

O(n) comparisons per element → O(n2) runtime!

O(n2)

 14

Merge Sort

O(n)

O(n)

O(n)

O(n)

O(n)

O(n log n)

O(n log n) runtime → O(log n) comparisons per node!

Lower Bounds on Sorting

● All our algorithms compare pairs of
elements and their runtime is determined
by how many comparisons are made.
● These are all comparison based sorting

algorithms

● Can we prove that all comparison based
sorting algorithms require some
minimum number of comparisons?
● If we can do this, then we can prove a lower

bound on the runtime of all comparison
based sorting algorithms.

Lower Bounds on Sorting

● All our algorithms compare pairs of
elements and their runtime is determined
by how many comparisons are made.
● These are all comparison based sorting

algorithms

● Can we prove that all comparison based
sorting algorithms require some
minimum number of comparisons?
● If we can do this, then we can prove a lower

bound on the runtime of all comparison
based sorting algorithms.

Intuition Behind Proof

1 2 3

Intuition Behind Proof

X
1

X
2

X
3

Intuition Behind Proof
X

1
X

2
X

3
X

2
X

1
X

3
X

2
X

3
X

1
X

1
X

3
X

2
X

3
X

1
X

2
X

3
X

2
X

1

X
2 < X

3
X

1 < X
3

X
1 < X

2

X
1 < X

2

...

X
1

X
2

X
3

Intuition Behind Proof

● Every sorting algorithm needs to be able
to sort every possible permutation of n
elements.

● The number of comparisons needed is
proportional to the height of the tree.

Intuition Behind Proof
X

1
X

2
X

3
X

2
X

1
X

3
X

2
X

3
X

1
X

1
X

3
X

2
X

3
X

1
X

2
X

3
X

2
X

1

X
2 < X

3
X

1 < X
3

X
1 < X

2

X
1 < X

2

...

X
1

X
2

X
3

 ?

Intuition Behind Proof

● Because any list of elements has n!
permutations, we know the tree has n!
leaves.

● The height of a balanced binary tree with
L leaves is O(log L)

● Therefore, the height of our tree is O(log
n!)

● Sterling's Approximation
● O(log n!) = O(n log n)

● The height of our tree is O(n log n)

Therefore, all comparison based sorting
algorithms require O(n log n)
comparisons in the worst case.

This implies the best we can do is
O(n log n) worst case runtime.

(QED)

Other Sorting Algorithms

● Summary: No “comparison-based”
sorting algorithms can do better than
worse case O(n log n).

● Should we give up? No!
● Two ways we can get around this:

● Make additional assumptions about the data
● Use a non-comparison based sorting

algorithm

Additional Assumptions

● If we have an unsorted array in which we
knew every element was within k indices
of where it should be and ran HeapSort

4 3 1 5 2 6 9 7 8 12 11 10

k = 3

Heap

Additional Assumptions

4

3 1 5 2 6 9 7 8 12 11 10

k = 3

Heap

● If we have an unsorted array in which we
knew every element was within k indices
of where it should be and ran HeapSort

Additional Assumptions

4 3

1 5 2 6 9 7 8 12 11 10

k = 3

Heap

● If we have an unsorted array in which we
knew every element was within k indices
of where it should be and ran HeapSort

Additional Assumptions

3 4

1 5 2 6 9 7 8 12 11 10

k = 3

Heap

● If we have an unsorted array in which we
knew every element was within k indices
of where it should be and ran HeapSort

Additional Assumptions

3 4 1

5 2 6 9 7 8 12 11 10

k = 3

Heap

● If we have an unsorted array in which we
knew every element was within k indices
of where it should be and ran HeapSort

Additional Assumptions

1 4 3

5 2 6 9 7 8 12 11 10

k = 3

Heap

● If we have an unsorted array in which we
knew every element was within k indices
of where it should be and ran HeapSort

Additional Assumptions

1 4 3 5

2 6 9 7 8 12 11 10

k = 3

Heap

● If we have an unsorted array in which we
knew every element was within k indices
of where it should be and ran HeapSort

Additional Assumptions

1

4 3 5

2 6 9 7 8 12 11 10

k = 3

Heap

● If we have an unsorted array in which we
knew every element was within k indices
of where it should be and ran HeapSort

Additional Assumptions

1

4 3 5

2 6 9 7 8 12 11 10

k = 3

Heap

● If we have an unsorted array in which we
knew every element was within k indices
of where it should be and ran HeapSort

Additional Assumptions

1

2 3 5 4

6 9 7 8 12 11 10

k = 3

Heap

● If we have an unsorted array in which we
knew every element was within k indices
of where it should be and ran HeapSort

Additional Assumptions

1 2

3 5 4

6 9 7 8 12 11 10

k = 3

Heap

● If we have an unsorted array in which we
knew every element was within k indices
of where it should be and ran HeapSort

Additional Assumptions

1 2

3 5 4 6

9 7 8 12 11 10

k = 3

Heap

● If we have an unsorted array in which we
knew every element was within k indices
of where it should be and ran HeapSort

Additional Assumptions

1 2 3

4 5 6

9 7 8 12 11 10

k = 3

Heap

● If we have an unsorted array in which we
knew every element was within k indices
of where it should be and ran HeapSort

Additional Assumptions

1 2 3

4 5 6 9

7 8 12 11 10

k = 3

Heap

● If we have an unsorted array in which we
knew every element was within k indices
of where it should be and ran HeapSort

Additional Assumptions

1 2 3 4

5 6 9

7 8 12 11 10

k = 3

Heap

● If we have an unsorted array in which we
knew every element was within k indices
of where it should be and ran HeapSort

Additional Assumptions

1 2 3 4

5 6 9 7

8 12 11 10

k = 3

Heap

● If we have an unsorted array in which we
knew every element was within k indices
of where it should be and ran HeapSort

Additional Assumptions

1 2 3 4 5

6 9 7

8 12 11 10

k = 3

Heap

● If we have an unsorted array in which we
knew every element was within k indices
of where it should be and ran HeapSort

Additional Assumptions

1 2 3 4 5

6 8 7 9

12 11 10

k = 3

Heap

● If we have an unsorted array in which we
knew every element was within k indices
of where it should be and ran HeapSort

Additional Assumptions

1 2 3 4 5 6

7 8 9 12

11 10

k = 3

Heap

● If we have an unsorted array in which we
knew every element was within k indices
of where it should be and ran HeapSort

Additional Assumptions

1 2 3 4 5 6 8 97 121110

k = 3

Heap

● If we have an unsorted array in which we
knew every element was within k indices
of where it should be and ran HeapSort

Heap Sort

● If we know every element is within k
indices of its correct location, then we
can dequeue whenever the heap has k +
1 elements

● What is the runtime of this algorithm?
● Each element is added and removed
● Both operations are logarithmic in the size of

the Heap = k + 1
● Therefore and remove are O(log k)
● We have O(n) elements
● O(n log k)!!!!

Heap Sort

● The smaller we can make k, the faster
HeapSort will run.

● When k = n it devolves into regular
HeapSort with O(n log n) runtime

Non-Comparison Based Algorithms

● Another way to beat the O(n log n)
bound is to use non-comparison based
sorting algorithms:
● Bucket Sort: Construct a histogram of the

elements in the array

Bucket Sort

0 0

a b c d e f g h i j k l m n o p q r s t u v w x y z

b a n a n a

Bucket Sort

0 1 0

a b c d e f g h i j k l m n o p q r s t u v w x y z

b a n a n a

Bucket Sort

1 1 0

a b c d e f g h i j k l m n o p q r s t u v w x y z

b a n a n a

Bucket Sort

1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

a b c d e f g h i j k l m n o p q r s t u v w x y z

b a n a n a

Bucket Sort

3 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

a b c d e f g h i j k l m n o p q r s t u v w x y z

b a n a n a

Bucket Sort

3 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

a b c d e f g h i j k l m n o p q r s t u v w x y z

Bucket Sort

3 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

a b c d e f g h i j k l m n o p q r s t u v w x y z

a a a

Bucket Sort

3 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

a b c d e f g h i j k l m n o p q r s t u v w x y z

a a a b

Bucket Sort

3 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

a b c d e f g h i j k l m n o p q r s t u v w x y z

a a a b

Bucket Sort

3 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

a b c d e f g h i j k l m n o p q r s t u v w x y z

a a a b

Bucket Sort

3 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

a b c d e f g h i j k l m n o p q r s t u v w x y z

a a a b

Bucket Sort

3 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

a b c d e f g h i j k l m n o p q r s t u v w x y z

a a a b

Bucket Sort

3 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

a b c d e f g h i j k l m n o p q r s t u v w x y z

a a a b

Bucket Sort

3 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

a b c d e f g h i j k l m n o p q r s t u v w x y z

a a a b n n

Bucket Sort
● Pseudocode:

● Create an array histogram of length d
where d is the number of possible values
elements can take in the original array.

● For each element in the array we're sorting,
update the histogram

● For each index in the histogram, output
the corresponding element histogram[i]
times

● Runtime?
● O(d + n)

● Generally used if d is small (e.g. char)

Bucket Sort for ints

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 232-6 232-5 232-4 232-3 232-2 232-1
...

8 112 240 62 987 500

Limits of Programs

● There are three I want to consider:
● What can't a computer do any faster?
● What can't a computer do fast?
● What can't a computer do at all?

Traveling Salesperson

https://www.google.com/maps/vt/data=VLHX1wd2Cgu8wR6jwyh-km8JBWAkEzU4,2bUCUBVs3YYr-KB4ccFl-
1Q1nWYcyKzmW0Ggf8ar4OOyEuuN9txRnTiKzIvmH6qy6B4vSoZvopndG7VjMIsOIDayhdkqKblOykP1wZYm9RcF8-
Y6pkecPwDi3xc98B3gNGLchfR7xnPKzCGEmRocrv9OczmELzORvRseZHLyjWOvL0GzUeg0WFJGA4Y

Traveling Salesperson

https://www.google.com/maps/vt/data=VLHX1wd2Cgu8wR6jwyh-km8JBWAkEzU4,2bUCUBVs3YYr-KB4ccFl-
1Q1nWYcyKzmW0Ggf8ar4OOyEuuN9txRnTiKzIvmH6qy6B4vSoZvopndG7VjMIsOIDayhdkqKblOykP1wZYm9RcF8-
Y6pkecPwDi3xc98B3gNGLchfR7xnPKzCGEmRocrv9OczmELzORvRseZHLyjWOvL0GzUeg0WFJGA4Y

Seattle

SF

Salt Lake City

Austin

New York
$300

 $600

$800$400

$250

$350

$550

Traveling Salesperson
● Find a minimal cost tour (visits every city

and returns to starting city)
● How can we solve this?
● Algorithm 1: Consider all possible

permutations of cities and return the
cheapest permutation.
● Worst case O(n!)

● Algorithm 2: Dynamic Programming.
● Technique similar in spirit to memoization

except you build up longer and longer paths
● Worst case O(2n)

Traveling Salesperson
● O(n!) and O(2n) are both exponential

runtimes
● i.e. The runtime of the algorithm grows

exponential in the size of the input

● How long it takes to compute depends on
constant factors, but if each operation
takes 1 millisecond...

 69

Size n n log n n2 n3 2n n!

10 10μs 33μs 100μs 1ms 1ms 1 hour

20 20μs 86μs 400μs 8ms 17min 8 years

30 30μs 147μs 900μs 27ms 12 days 2 sixtillion years

40 40μs 212μs 1.6ms 64ms 34 years ...

50 50μs 282μs 2.5ms 125ms 3.56e2 years

60 60μs 354μs 3.6ms 216ms 3.65e7 years

70 70μs 429μs 4.9ms 343ms 3.74e10 years

80 80μs 506μs 6.4ms 512ms 3.83e13 years

90 90μs 584μs 8.1ms 729ms 3.92e16 years

100 100μs 664μs 10ms 1s 40 quintillion
years

Comparison of Runtimes
(1 operation = 1 microsecond)

Traveling Salesperson
● There are many problems in which the

best known algorithms run in worst case
exponential time...

Sensor Placement

$5

$1

$3

$2

$3

$1

$1

$8

$2

$2

Graph Coloring

Games...

http://kickdes.files.wordpress.com/2011/04/classicbattleship.jpg

http://www.technologyreview.com/blog/arxiv/files/80466/Pac-Man.png

http://alum.mit.edu/pages/sliceofmit/files/2012/03/SuperMarioBros.jpg

Complexity Classes
● In Complexity Theory computing

problems are put into different
complexity classes

● P: The set of problems that can be solved
in polynomial time
● e.g. sorting, searching an array for a value

● NP: The set of problems that can be
solved in exponential time
● e.g. Traveling Salesperson, Graph Coloring

● It has not been proved, but it's assumed
that P != NP

Beating Exponential Time
● We have two options to beat exponential

time algorithms:
● Approximation Algorithms
● Heuristics

Approximation Algorithms
● A k-Approximation Algorithm is an

algorithm that you can prove gets within
a factor k of an optimal solution in the
worst case

● A simple 2-Approxmiation Algorithm for
traveling salesperson...
● Compute a Minimum Spanning Tree of the

graph and return a “depth first” path of the
tree

2-Approximation TSP

Seattle

SF

Salt Lake City

Austin

New York
$300

 $600

$800$400

$250

$350

$550

2-Approximation TSP

Seattle

SF

Salt Lake City

Austin

New York
$300

$250

$350

$550

WHY????
● Remember we are computing an optimal

tour – visit every node at least once and
end at the starting node.

● The cost of every optimal tour is going to
be less than the cost of a Minimum
Spanning Tree

● The cost of our MST is a lower bound of
the cost of an optimal tour

2-Approximation TSP

Seattle

SF

Salt Lake City

Austin

New York
$300

$250

$350

$550

2-Approximation TSP

Seattle

SF

Salt Lake City

Austin

New York

2-Approximation TSP

Seattle

SF Salt Lake City

Austin New York

2-Approximation TSP

Seattle

SF Salt Lake City

Austin New York

Seattle

2-Approximation TSP

Seattle

SF Salt Lake City

Austin New York

Seattle → SF

2-Approximation TSP

Seattle

SF Salt Lake City

Austin New York

Seattle → SF → Seattle

2-Approximation TSP

Seattle

SF Salt Lake City

Austin New York

Seattle → SF → Seattle → SLC

2-Approximation TSP

Seattle

SF Salt Lake City

Austin New York

Seattle → SF → Seattle → SLC → Austin

2-Approximation TSP

Seattle

SF Salt Lake City

Austin New York

Seattle → SF → Seattle → SLC → Austin → SLC

2-Approximation TSP

Seattle

SF Salt Lake City

Austin New York

Seattle → SF → Seattle → SLC → Austin → SLC
→ NY

2-Approximation TSP

Seattle

SF Salt Lake City

Austin New York

Seattle → SF → Seattle → SLC → Austin → SLC
→ NY → SLC

2-Approximation TSP

Seattle

SF Salt Lake City

Austin New York

Seattle → SF → Seattle → SLC → Austin → SLC
→ NY → SLC → Seattle

2-Approximation TSP
● Because we use every edge twice, the

cost of this tour is going to be twice the
cost of the MST.

● The cost of the MST is less than or equal
to the cost of an optimal tour.

● Therefore, the cost of our tour is less
than or equal to twice the cost of an
optimal tour.
● Hence, this is a 2-approximation

Approximation Algorithms
● Better approximation algorithms exist for

TSP (but they are more difficult to prove)
● Many approximation algorithms exist for

different problems in NP

Heuristics
● A different Idea: Construct a heuristic

that will give a “good” solution.
● Even if it performs terribly in the “worst

case”, it may perform well in “most” cases.

● Nearest Neighbor Heuristic
● Iteratively extend path by picking cheapest

edge that will get us to an unvisited node
● Works reasonably well with high probability
● Has terrible worst case behavior.

– Okay because worst case is unlikely

Limits of Programs

● There are three I want to consider:
● What can't a computer do any faster?
● What can't a computer do fast?
● What can't a computer do at all?

A Useful Tool
● It would be incredibly useful if Visual

Studio and Xcode would detect the
following issues before running a
program:
● Infinite Loops/Recursion
● Memory Leaks
● Issues dereferencing NULL and uninitialized

pointers
● Automatic grading of assignments

Problem: It is impossible to write a program
which can, for all input programs,

successfully do these tasks!

A Useful Tool
● Example: It is impossible to write a

program that, given any program and
input, detects if the program will
terminate on that input.
● Called the Halting Problem
● We say that the Halting Problem is

undecideable
● Wait...really?

What about this?

int main() {

 while (true) {

 cout << “Counter Example?” << endl;

 }

}

Or this?

int main() {

 for (int i = 0; i < 10; i++)

 cout << “This isn't hard!” << endl;

}

Or even this?

int main() {

 return 0;

}

Halting Problem
● For many program-input pairs we can

easily tell if they terminate.
● We cannot do this for all programs.
● So how can we construct one?

● It's tricky. Take CS161 to learn more about
this.

● We're just going to go over the intuition...

Proof Sketch
● The way we prove the Halting Problem is

undecideable is through proof by
contradiction: we start by assuming
that it is decideable then derive a
contradiction.
● Common proof technique for proving

something cannot exist

● Proof Sketch:
● Assume a program P exists that solves the

halting problem for all inputs
● Construct a new program Q from P
● Show P cannot decide if Q terminates

Proof Intuition
● Constructing Q from P is the heart of the

proof.
● It's somewhat confusing, but is similar in

spirit to the following contradiction:
● “The barber of Seville shaves everyone in

Seville who doesn't shave himself. Does the
barber shave himself?”

● Idea is to run P with input P

Halting Problem
● As a corollary, many other useful

questions regarding arbitrary programs
are also undecideable:
● Memory Leaks?
● Dereferencing NULL pointers?
● Many many more...

How Bad is This?
● As a result of this we run into some

issues...
● Can't prove arbitrary programs are correct –

need to test them
● Tools to detect memory leaks don't catch

everything

● Modern tools that detect these types of
issues can't detect everything, but can
still be useful.

Tomorrow
● Introduction to Machine Learning

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107

