## Limits of What Computers Can Do

## Announcements

- Assignment 6 due Friday at 11AM
- Cannot be turned in late!
- Regular Office Hours today
- Extended Office Hours this Week
- Wednesday, Thursday: Noon-5PM
- Graded midterms will be returned tomorrow (Wednesday)
- Please fill out course evaluations!


## Limits of Programs

- We've spent a lot of time going over cool stuff computers can do
- Quickly Sorting, Searching
- Binary Search, Quicksort
- Quickly storing and retrieving data
- Hashing, Binary Search Trees
- An interesting question to consider is what can't computers do


## Limits of Programs

- There are three I want to consider:
- What can't a computer do any faster?
- What can't a computer do fast?
- What can't a computer do at all?


## Limits of Programs

- There are three I want to consider:
- What can't a computer do any faster?
- What can't a computer do fast?
- What can't a computer do at all?


## Lower Bounds on Sorting

- Run times of various sorting algorithms:
- QuickSort: $O(n \log n)$
- MergeSort: $\mathrm{O}(n \log n)$
- HeapSort: $\mathrm{O}(n \log n)$
- SmoothSort: O( $n \log n$ )
- Notice a pattern?


## All of our fast sorting algorithms run in $\mathrm{O}(n \log n)$ - what's up with that?

## Lower Bounds on Sorting

- I haven't been holding back - we don't have any general-purpose sorting algorithms that are asymptotically faster than $O(n \log n)$.
- In fact, we can prove that we can't do any better (for general purpose algorithms).
- In order to do this we need to find what all our sorting algorithms have in common...


## An Initial Idea: Selection Sort



## Another Idea: Insertion Sort



## The Key Insight: Merge



## Lower Bounds on Sorting

- Observation: All our sorting algorithms involve repeatedly comparing pairs of elements in the array
- One way of measuring the amount of work our sorting algorithms do is by counting how many comparisons are performed


## An Initial Idea: Selection Sort


$O(n)$ comparisons per element $\rightarrow \mathbf{O}\left(n^{2}\right)$ runtime!

## Merge Sort

O(n)
$\square$
$\square$ O(n)
$\square$
$\square$
$\square$ O(n)
$\square$
$\square$
$\square$
$\square$ O(n)
 O(n $\log n)$
$O(n \log n)$ runtime $\rightarrow O(\log n)$ comparisons per node!

## Lower Bounds on Sorting

- All our algorithms compare pairs of elements and their runtime is determined by how many comparisons are made.
- These are all comparison based sorting algorithms
- Can we prove that all comparison based sorting algorithms require some minimum number of comparisons?
- If we can do this, then we can prove a lower bound on the runtime of all comparison based sorting algorithms.


## Lower Bounds on Sorting

- All our algorithms compare pairs of elements and their runtime is determined by how many comparisons are made.
- These are all comparison based sorting algorithms
- Can we prove that all comparison based sorting algorithms require some minimum number of comparisons?
- If we can do this, then we can prove a lower bound on the runtime of all comparison based sorting algorithms.


## Intuition Behind Proof



## Intuition Behind Proof



## Intuition Behind Proof



## Intuition Behind Proof

- Every sorting algorithm needs to be able to sort every possible permutation of $\boldsymbol{n}$ elements.
- The number of comparisons needed is proportional to the height of the tree.


## Intuition Behind Proof



## Intuition Behind Proof

- Because any list of elements has $\boldsymbol{n}$ ! permutations, we know the tree has $\boldsymbol{n}$ ! leaves.
- The height of a balanced binary tree with $L$ leaves is $\mathbf{O}(\log L)$
- Therefore, the height of our tree is $\mathbf{O}(\mathbf{l o g}$ $n!)$
- Sterling's Approximation
- $\mathbf{O}(\log \boldsymbol{n}!)=\mathbf{O}(\boldsymbol{n} \log \boldsymbol{n})$
- The height of our tree is $\mathbf{O}(\boldsymbol{n} \log \boldsymbol{n})$

Therefore, all comparison based sorting algorithms require $\mathbf{O}(\boldsymbol{n} \log \boldsymbol{n})$ comparisons in the worst case.

This implies the best we can do is $\mathbf{O}(\boldsymbol{n} \log \boldsymbol{n})$ worst case runtime.
(QED)

## Other Sorting Algorithms

- Summary: No "comparison-based" sorting algorithms can do better than worse case $\mathbf{O}(\boldsymbol{n} \log \boldsymbol{n})$.
- Should we give up? No!
- Two ways we can get around this:
- Make additional assumptions about the data
- Use a non-comparison based sorting algorithm


## Additional Assumptions

- If we have an unsorted array in which we knew every element was within $k$ indices of where it should be and ran HeapSort

$$
k=3
$$

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 4 & 3 & 1 & 5 & 2 & 6 & 9 & 7 & 8 & 12 & 11 & 10
\end{array}
$$

Heap

## Additional Assumptions

- If we have an unsorted array in which we knew every element was within $k$ indices of where it should be and ran HeapSort

$$
k=3
$$

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|}
\hline 3 & 1 & 5 & 2 & 6 & 9 & 7 & 8 & 12 & 11
\end{array} 10
$$

## Additional Assumptions

- If we have an unsorted array in which we knew every element was within $k$ indices of where it should be and ran HeapSort

$$
k=3
$$

$$
\begin{array}{llllllllllll}
1 & 5 & 2 & 6 & 9 & 7 & 8 & 12 & 11 & 10
\end{array}
$$

## Additional Assumptions

- If we have an unsorted array in which we knew every element was within $k$ indices of where it should be and ran HeapSort

$$
k=3
$$

$$
\begin{array}{llllllllllll}
1 & 5 & 2 & 6 & 9 & 7 & 8 & 12 & 11 & 10
\end{array}
$$

## Additional Assumptions

- If we have an unsorted array in which we knew every element was within $k$ indices of where it should be and ran HeapSort

$$
k=3
$$

## $\begin{array}{llllllllll}5 & 2 & 6 & 9 & 7 & 8 & 12 & 11 & 10\end{array}$

## Additional Assumptions

- If we have an unsorted array in which we knew every element was within $k$ indices of where it should be and ran HeapSort

$$
k=3
$$

## $\begin{array}{llllllllll}5 & 2 & 6 & 9 & 7 & 8 & 12 & 11 & 10\end{array}$

| Heap | 1 | 4 | 3 |
| :--- | :--- | :--- | :--- |

## Additional Assumptions

- If we have an unsorted array in which we knew every element was within $k$ indices of where it should be and ran HeapSort

$$
k=3
$$

$$
\begin{array}{l|l|l|l|l|l|l|l|}
\hline 2 & 6 & 9 & 7 & 8 & 12 & 11 & 10
\end{array}
$$



## Additional Assumptions

- If we have an unsorted array in which we knew every element was within $k$ indices of where it should be and ran HeapSort

$$
k=3
$$

$$
\begin{array}{l|lllllllll}
2 & 6 & 9 & 7 & 8 & 12 & 11 & 10
\end{array}
$$

$$
\begin{array}{l|l|l}
4 & 3 & 5
\end{array}
$$

## Additional Assumptions

- If we have an unsorted array in which we knew every element was within $k$ indices of where it should be and ran HeapSort

$$
k=3
$$

$$
\begin{array}{lllllllll}
2 & 6 & 9 & 7 & 8 & 12 & 11 & 10
\end{array}
$$

## Additional Assumptions

- If we have an unsorted array in which we knew every element was within $k$ indices of where it should be and ran HeapSort

$$
k=3
$$

$$
\begin{array}{l|l|l|l|l|l|l|}
\hline 6 & 9 & 7 & 8 & 12 & 11 & 10
\end{array}
$$

## Additional Assumptions

- If we have an unsorted array in which we knew every element was within $k$ indices of where it should be and ran HeapSort

$$
k=3
$$

$$
\begin{array}{l|l|lllllll}
6 & 9 & 7 & 8 & 12 & 11 & 10
\end{array}
$$

## 12

| Heap | 3 | 5 | 4 |
| :--- | :--- | :--- | :--- |

## Additional Assumptions

- If we have an unsorted array in which we knew every element was within $k$ indices of where it should be and ran HeapSort

$$
k=3
$$

$$
\begin{array}{lllllll}
9 & 7 & 8 & 12 & 11 & 10
\end{array}
$$

## 12

| Heap | 3 | 5 | 4 | 6 |
| :--- | :--- | :--- | :--- | :--- |

## Additional Assumptions

- If we have an unsorted array in which we knew every element was within $k$ indices of where it should be and ran HeapSort

$$
k=3
$$

$$
\begin{array}{l|llllll}
9 & 7 & 8 & 12 & 11 & 10
\end{array}
$$

## 123

| Heap | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- |

## Additional Assumptions

- If we have an unsorted array in which we knew every element was within $k$ indices of where it should be and ran HeapSort

$$
k=3
$$

## 123

| Heap | 4 | 5 | 6 | 9 |
| :--- | :--- | :--- | :--- | :--- |

## Additional Assumptions

- If we have an unsorted array in which we knew every element was within $k$ indices of where it should be and ran HeapSort

$$
k=3
$$

$$
\begin{array}{l|l|l|l}
1 & 2 & 3 & 4
\end{array}
$$

| Heap | 5 | 6 | 9 |
| :--- | :--- | :--- | :--- |

## Additional Assumptions

- If we have an unsorted array in which we knew every element was within $k$ indices of where it should be and ran HeapSort

$$
k=3
$$

$$
8121110
$$

$$
\begin{array}{l|l|l|l}
1 & 2 & 3 & 4
\end{array}
$$

| Heap | 5 | 6 | 9 | 7 |
| :--- | :--- | :--- | :--- | :--- |

## Additional Assumptions

- If we have an unsorted array in which we knew every element was within $k$ indices of where it should be and ran HeapSort

$$
k=3
$$

$$
8121110
$$

$$
\begin{array}{l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5
\end{array}
$$

## Additional Assumptions

- If we have an unsorted array in which we knew every element was within $k$ indices of where it should be and ran HeapSort

$$
k=3
$$

$$
\begin{array}{l|l|l|l|l}
1 & 2 & 3 & 4 & 5
\end{array}
$$

## Additional Assumptions

- If we have an unsorted array in which we knew every element was within $k$ indices of where it should be and ran HeapSort

$$
k=3
$$

$$
\begin{array}{l|l|l|l|l|l|}
1 & 2 & 3 & 4 & 5 & 6
\end{array}
$$

| Heap | 7 | 8 | 9 | 12 |
| :--- | :--- | :--- | :--- | :--- |

## Additional Assumptions

- If we have an unsorted array in which we knew every element was within $k$ indices of where it should be and ran HeapSort

$$
k=3
$$

$$
\begin{array}{ll|l|l|l|l|l|l|l|l|l|l|}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{array}
$$

Heap

## Heap Sort

- If we know every element is within $k$ indices of its correct location, then we can dequeue whenever the heap has $k+$ 1 elements
- What is the runtime of this algorithm?
- Each element is added and removed
- Both operations are logarithmic in the size of the Heap $=k+1$
- Therefore and remove are $\mathbf{O}(\log \boldsymbol{k})$
- We have $\mathbf{O}(\boldsymbol{n})$ elements
- O(n $\log k)!!!!$


## Heap Sort

- The smaller we can make $k$, the faster HeapSort will run.
- When $k=n$ it devolves into regular HeapSort with $\mathbf{O}(\boldsymbol{n} \log \boldsymbol{n})$ runtime


## Non-Comparison Based Algorithms

- Another way to beat the $\mathbf{O}(\boldsymbol{n} \log \boldsymbol{n})$ bound is to use non-comparison based sorting algorithms:
- Bucket Sort: Construct a histogram of the elements in the array


## Bucket Sort

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z |

## banana

## Bucket Sort



## banana

## Bucket Sort

| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z |



## Bucket Sort

| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z |

banana

## Bucket Sort

| 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z |



## Bucket Sort

| 3 | 1 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 |  |  |  | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |  |  | 0 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a | b | c | d | d | e | $f$ | g | h | i |  |  |  | 1 | m | n | o | p | q | r | s |  |  | u |  |  |  | y | z |

## Bucket Sort

| 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z |

## a a 2

## Bucket Sort

| 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z |

## a a ab

## Bucket Sort



## $a \mathrm{a} a \mathrm{~b} \mathrm{n}$

## Bucket Sort

- Pseudocode:
- Create an array histogram of length $d$ where $d$ is the number of possible values elements can take in the original array.
- For each element in the array we're sorting, update the histogram
- For each index in the histogram, output the corresponding element histogram[i] times
- Runtime?
- $\mathbf{O}(\boldsymbol{d}+n)$
- Generally used if $d$ is small (e.g. char)


## Bucket Sort for ints

| 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 |  | 4 | 5 | 6 | 7 | 8 | 9 | 10 | $2^{32}-6$ | $2^{32}-5$ | $2^{32}-4$ | $2^{32}-3$ | $2^{32}-2$ | $2^{32}-1$ |

## 811224062987500

## Limits of Programs

- There are three I want to consider:
- What can't a computer do any faster?
- What can't a computer do fast?
- What can't a computer do at all?


## Traveling Salesperson



## Traveling Salesperson



[^0]
## Traveling Salesperson

- Find a minimal cost tour (visits every city and returns to starting city)
- How can we solve this?
- Algorithm 1: Consider all possible permutations of cities and return the cheapest permutation.
- Worst case O(n!)
- Algorithm 2: Dynamic Programming.
- Technique similar in spirit to memoization except you build up longer and longer paths
- Worst case $\mathbf{O}\left(\mathbf{2}^{n}\right)$


## Traveling Salesperson

- $\mathbf{O}(n!)$ and $\mathbf{O}\left(2^{n}\right)$ are both exponential runtimes
- i.e. The runtime of the algorithm grows exponential in the size of the input
- How long it takes to compute depends on constant factors, but if each operation takes 1 millisecond...


## Comparison of Runtimes

(1 operation $=1$ microsecond)

| Size | n | $\mathrm{n} \log \mathrm{n}$ | $\mathrm{n}^{2}$ | $\mathrm{n}^{3}$ | $2^{\mathrm{n}}$ | $\mathrm{n}!$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10 | $10 \mu \mathrm{~s}$ | $33 \mu \mathrm{~s}$ | $100 \mu \mathrm{~s}$ | 1 ms | 1 ms | 1 hour |
| 20 | $20 \mu \mathrm{~s}$ | $86 \mu \mathrm{~s}$ | $400 \mu \mathrm{~s}$ | 8 ms | 17 min | 8 years |
| 30 | $30 \mu \mathrm{~s}$ | $147 \mu \mathrm{~s}$ | $900 \mu \mathrm{~s}$ | 27 ms | 12 days | 2 sixtillion years |
| 40 | $40 \mu \mathrm{~s}$ | $212 \mu \mathrm{~s}$ | 1.6 ms | 64 ms | 34 years | $\ldots$ |
| 50 | $50 \mu \mathrm{~s}$ | $282 \mu \mathrm{~s}$ | 2.5 ms | 125 ms | $3.56 \mathrm{e}^{2}$ years |  |
| 60 | $60 \mu \mathrm{~s}$ | $354 \mu \mathrm{~s}$ | 3.6 ms | 216 ms | $3.65 \mathrm{e}^{7}$ years |  |
| 70 | $70 \mu \mathrm{~s}$ | $429 \mu \mathrm{~s}$ | 4.9 ms | 343 ms | $3.74 \mathrm{e}^{10}$ years |  |
| 80 | $80 \mu \mathrm{~s}$ | $506 \mu \mathrm{~s}$ | 6.4 ms | 512 ms | $3.83 \mathrm{e}^{13}$ years |  |
| 90 | $90 \mu \mathrm{~s}$ | $584 \mu \mathrm{~s}$ | 8.1 ms | 729 ms | $3.92 \mathrm{e}^{16}$ years |  |
| 100 | $100 \mu \mathrm{~s}$ | $664 \mu \mathrm{~s}$ | 10 ms | 1 s | 40 quintillion <br> years |  |

## Traveling Salesperson

- There are many problems in which the best known algorithms run in worst case exponential time...


## Sensor Placement



## Graph Coloring

## Games...


http://kickdes.files.wordpress.com/2011/04/classicbattleship.jpg

http://alum.mit.edu/pages/sliceofmit/files/2012/03/SuperMarioBros.jpg

[^1]
## Complexity Classes

- In Complexity Theory computing problems are put into different complexity classes
- P: The set of problems that can be solved in polynomial time
- e.g. sorting, searching an array for a value
- NP: The set of problems that can be solved in exponential time
- e.g. Traveling Salesperson, Graph Coloring
- It has not been proved, but it's assumed that $\mathbf{P}!=\mathbf{N P}$


## Beating Exponential Time

- We have two options to beat exponential time algorithms:
- Approximation Algorithms
- Heuristics


## Approximation Algorithms

- A k-Approximation Algorithm is an algorithm that you can prove gets within a factor $k$ of an optimal solution in the worst case
- A simple 2-Approxmiation Algorithm for traveling salesperson...
- Compute a Minimum Spanning Tree of the graph and return a "depth first" path of the tree


## 2-Approximation TSP



## 2-Approximation TSP



## WHY????

- Remember we are computing an optimal tour - visit every node at least once and end at the starting node.
- The cost of every optimal tour is going to be less than the cost of a Minimum Spanning Tree
- The cost of our MST is a lower bound of the cost of an optimal tour


## 2-Approximation TSP



## 2-Approximation TSP



## 2-Approximation TSP



## 2-Approximation TSP



## Seattle

## 2-Approximation TSP



## Seattle $\rightarrow$ SF

## 2-Approximation TSP



## Seattle $\rightarrow$ SF $\rightarrow$ Seattle

## 2-Approximation TSP



## Seattle $\rightarrow$ SF $\rightarrow$ Seattle $\rightarrow$ SLC

## 2-Approximation TSP



## Seattle $\rightarrow$ SF $\rightarrow$ Seattle $\rightarrow$ SLC $\rightarrow$ Austin

## 2-Approximation TSP



## Seattle $\rightarrow$ SF $\rightarrow$ Seattle $\rightarrow$ SLC $\rightarrow$ Austin $\rightarrow$ SLC

## 2-Approximation TSP



## Seattle $\rightarrow$ SF $\rightarrow$ Seattle $\rightarrow$ SLC $\rightarrow$ Austin $\rightarrow$ SLC $\rightarrow$ NY

## 2-Approximation TSP



## Seattle $\rightarrow$ SF $\rightarrow$ Seattle $\rightarrow$ SLC $\rightarrow$ Austin $\rightarrow$ SLC $\rightarrow \mathbf{N Y} \rightarrow$ SLC

## 2-Approximation TSP



## Seattle $\rightarrow$ SF $\rightarrow$ Seattle $\rightarrow$ SLC $\rightarrow$ Austin $\rightarrow$ SLC $\rightarrow$ NY $\rightarrow$ SLC $\rightarrow$ Seattle

## 2-Approximation TSP

- Because we use every edge twice, the cost of this tour is going to be twice the cost of the MST.
- The cost of the MST is less than or equal to the cost of an optimal tour.
- Therefore, the cost of our tour is less than or equal to twice the cost of an optimal tour.
- Hence, this is a 2-approximation


## Approximation Algorithms

- Better approximation algorithms exist for TSP (but they are more difficult to prove)
- Many approximation algorithms exist for different problems in NP


## Heuristics

- A different Idea: Construct a heuristic that will give a "good" solution.
- Even if it performs terribly in the "worst case", it may perform well in "most" cases.
- Nearest Neighbor Heuristic
- Iteratively extend path by picking cheapest edge that will get us to an unvisited node
- Works reasonably well with high probability
- Has terrible worst case behavior.
- Okay because worst case is unlikely


## Limits of Programs

- There are three I want to consider:
- What can't a computer do any faster?
- What can't a computer do fast?
- What can't a computer do at all?


## A Useful Tool

- It would be incredibly useful if Visual Studio and Xcode would detect the following issues before running a program:
- Infinite Loops/Recursion
- Memory Leaks
- Issues dereferencing NULL and uninitialized pointers
- Automatic grading of assignments

Problem: It is impossible to write a program which can, for all input programs, successfully do these tasks!

## A Useful Tool

- Example: It is impossible to write a program that, given any program and input, detects if the program will terminate on that input.
- Called the Halting Problem
- We say that the Halting Problem is undecideable
- Wait...really?


## What about this?

int main() \{
while (true) \{
cout << "Counter Example?" << endl;
\}
\}

## Or this?

int main() \{

$$
\begin{aligned}
& \text { for (int } i=0 ; i<10 ; i++ \text { ) } \\
& \quad \text { cout } \ll \text { "This isn't hard!" } \ll \text { endl; }
\end{aligned}
$$

\}

## Or even this?

int main() \{ return 0;
\}

## Halting Problem

- For many program-input pairs we can easily tell if they terminate.
- We cannot do this for all programs.
- So how can we construct one?
- It's tricky. Take CS161 to learn more about this.
- We're just going to go over the intuition...


## Proof Sketch

- The way we prove the Halting Problem is undecideable is through proof by contradiction: we start by assuming that it is decideable then derive a contradiction.
- Common proof technique for proving something cannot exist
- Proof Sketch:
- Assume a program $\mathbf{P}$ exists that solves the halting problem for all inputs
- Construct a new program $\mathbf{Q}$ from $\mathbf{P}$
- Show $\mathbf{P}$ cannot decide if $\mathbf{Q}$ terminates


## Proof Intuition

- Constructing $\mathbf{Q}$ from $\mathbf{P}$ is the heart of the proof.
- It's somewhat confusing, but is similar in spirit to the following contradiction:
- "The barber of Seville shaves everyone in Seville who doesn't shave himself. Does the barber shave himself?"
- Idea is to run $\mathbf{P}$ with input $\mathbf{P}$


## Halting Problem

- As a corollary, many other useful questions regarding arbitrary programs are also undecideable:
- Memory Leaks?
- Dereferencing NULL pointers?
- Many many more...


## How Bad is This?

- As a result of this we run into some issues...
- Can't prove arbitrary programs are correct need to test them
- Tools to detect memory leaks don't catch everything
- Modern tools that detect these types of issues can't detect everything, but can still be useful.


## Tomorrow

- Introduction to Machine Learning


[^0]:    https://www.google.com/maps/vt/data=VLHX1wd2Cgu8wR6jwyh-km8JBWAkEzU4,2bUCUBVs3YYr-KB4ccFI-

[^1]:    http://www.technologyreview.com/blog/arxiv/files/80466/Pac-Man.png

