
  

Limits of What 
Computers Can Do



  

Announcements

● Assignment 6 due Friday at 11AM
● Cannot be turned in late!

● Regular Office Hours today
● Extended Office Hours this Week

● Wednesday, Thursday: Noon-5PM

● Graded midterms will be returned 
tomorrow (Wednesday)

● Please fill out course evaluations!



  

Limits of Programs

● We've spent a lot of time going over cool 
stuff computers can do
● Quickly Sorting, Searching

– Binary Search, Quicksort
● Quickly storing and retrieving data

– Hashing, Binary Search Trees

● An interesting question to consider is 
what can't computers do



  

Limits of Programs

● There are three I want to consider:
● What can't a computer do any faster?
● What can't a computer do fast?
● What can't a computer do at all?
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● What can't a computer do any faster?
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Lower Bounds on Sorting

● Run times of various sorting algorithms:
● QuickSort: O(n log n)
● MergeSort: O(n log n)
● HeapSort: O(n log n)
● SmoothSort: O(n log n)

…

● Notice a pattern?



  

All of our fast sorting algorithms 
run in O(n log n) – what's up with that?



  

Lower Bounds on Sorting

● I haven't been holding back – we don't 
have any general-purpose sorting 
algorithms that are asymptotically faster 
than O(n log n).

● In fact, we can prove that we can't do 
any better (for general purpose 
algorithms).

● In order to do this we need to find what 
all our sorting algorithms have in 
common...
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An Initial Idea: Selection Sort

721 64
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Another Idea: Insertion Sort

7 2 1 64
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The Key Insight: Merge

10874 9653

1 2



  

Lower Bounds on Sorting

● Observation: All our sorting algorithms 
involve repeatedly comparing pairs of 
elements in the array

● One way of measuring the amount of 
work our sorting algorithms do is by 
counting how many comparisons are 
performed
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An Initial Idea: Selection Sort

721 64

O(n) comparisons per element → O(n2) runtime!

O(n2)
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Merge Sort

O(n)

O(n)

O(n)

O(n)

O(n)

O(n log n)

O(n log n) runtime → O(log n) comparisons per node!



  

Lower Bounds on Sorting

● All our algorithms compare pairs of 
elements and their runtime is determined 
by how many comparisons are made.
● These are all comparison based sorting 

algorithms

● Can we prove that all comparison based 
sorting algorithms require some 
minimum number of comparisons?
● If we can do this, then we can prove a lower 

bound on the runtime of all comparison 
based sorting algorithms.
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Intuition Behind Proof
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Intuition Behind Proof

● Every sorting algorithm needs to be able 
to sort every possible permutation of n 
elements.

● The number of comparisons needed is 
proportional to the height of the tree.



  

Intuition Behind Proof
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Intuition Behind Proof

● Because any list of elements has n! 
permutations, we know the tree has n! 
leaves.

● The height of a balanced binary tree with 
L leaves is O(log L)

● Therefore, the height of our tree is O(log 
n!)

● Sterling's Approximation
● O(log n!) = O(n log n)

● The height of our tree is O(n log n)



  

Therefore, all comparison based sorting 
algorithms require O(n log n) 
comparisons in the worst case.

This implies the best we can do is 
O(n log n) worst case runtime.

(QED)



  

Other Sorting Algorithms

● Summary: No “comparison-based” 
sorting algorithms can do better than 
worse case O(n log n).

● Should we give up?  No!
● Two ways we can get around this:

● Make additional assumptions about the data
● Use a non-comparison based sorting 

algorithm



  

Additional Assumptions

● If we have an unsorted array in which we 
knew every element was within k indices 
of where it should be and ran HeapSort

4 3 1 5 2 6 9 7 8 12 11 10

k = 3

Heap
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knew every element was within k indices 
of where it should be and ran HeapSort



  

Heap Sort

● If we know every element is within k 
indices of its correct location, then we 
can dequeue whenever the heap has k + 
1 elements

● What is the runtime of this algorithm?
● Each element is added and removed
● Both operations are logarithmic in the size of 

the Heap = k + 1
● Therefore and remove are O(log k)
● We have O(n) elements
● O(n log k)!!!!



  

Heap Sort

● The smaller we can make k, the faster 
HeapSort will run.

● When k = n it devolves into regular 
HeapSort with O(n log n) runtime



  

Non-Comparison Based Algorithms

● Another way to beat the O(n log n) 
bound is to use non-comparison based 
sorting algorithms:
● Bucket Sort: Construct a histogram of the 

elements in the array



  

Bucket Sort

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a b c d e f g h i j k l m n o p q r s t u v w x y z

b a n a n a



  

Bucket Sort

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a b c d e f g h i j k l m n o p q r s t u v w x y z

b a n a n a



  

Bucket Sort
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Bucket Sort
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Bucket Sort
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Bucket Sort
● Pseudocode:

● Create an array histogram of length d 
where d is the number of possible values 
elements can take in the original array.

● For each element in the array we're sorting, 
update the histogram

● For each index in the histogram, output 
the corresponding element histogram[i] 
times

● Runtime?
●  O(d + n)

● Generally used if d is small (e.g. char)



  

Bucket Sort for ints

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 232-6 232-5 232-4 232-3 232-2 232-1
...

8 112 240 62 987 500



  

Limits of Programs

● There are three I want to consider:
● What can't a computer do any faster?
● What can't a computer do fast?
● What can't a computer do at all?



Traveling Salesperson

https://www.google.com/maps/vt/data=VLHX1wd2Cgu8wR6jwyh-km8JBWAkEzU4,2bUCUBVs3YYr-KB4ccFl-
1Q1nWYcyKzmW0Ggf8ar4OOyEuuN9txRnTiKzIvmH6qy6B4vSoZvopndG7VjMIsOIDayhdkqKblOykP1wZYm9RcF8-
Y6pkecPwDi3xc98B3gNGLchfR7xnPKzCGEmRocrv9OczmELzORvRseZHLyjWOvL0GzUeg0WFJGA4Y
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Traveling Salesperson
● Find a minimal cost tour (visits every city 

and returns to starting city)
● How can we solve this?
● Algorithm 1: Consider all possible 

permutations of cities and return the 
cheapest permutation.
● Worst case O(n!)

● Algorithm 2: Dynamic Programming.
● Technique similar in spirit to memoization 

except you build up longer and longer paths
● Worst case O(2n)



  

Traveling Salesperson
● O(n!) and O(2n) are both exponential 

runtimes
● i.e. The runtime of the algorithm grows 

exponential in the size of the input

● How long it takes to compute depends on 
constant factors, but if each operation 
takes 1 millisecond...
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Size n n log n n2 n3 2n n!

10 10μs 33μs 100μs 1ms 1ms 1 hour

20 20μs 86μs 400μs 8ms 17min 8 years

30 30μs 147μs 900μs 27ms 12 days 2 sixtillion years

40 40μs 212μs 1.6ms 64ms 34 years ...

50 50μs 282μs 2.5ms 125ms 3.56e2 years

60 60μs 354μs 3.6ms 216ms 3.65e7 years

70 70μs 429μs 4.9ms 343ms 3.74e10 years

80 80μs 506μs 6.4ms 512ms 3.83e13 years

90 90μs 584μs 8.1ms 729ms 3.92e16 years

100 100μs 664μs 10ms 1s 40 quintillion 
years

Comparison of Runtimes
(1 operation = 1 microsecond)



  

Traveling Salesperson
● There are many problems in which the 

best known algorithms run in worst case 
exponential time...
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Graph Coloring



  

Games...

http://kickdes.files.wordpress.com/2011/04/classicbattleship.jpg

http://www.technologyreview.com/blog/arxiv/files/80466/Pac-Man.png

http://alum.mit.edu/pages/sliceofmit/files/2012/03/SuperMarioBros.jpg



  

Complexity Classes
● In Complexity Theory computing 

problems are put into different 
complexity classes

● P: The set of problems that can be solved 
in polynomial time
● e.g. sorting, searching an array for a value

● NP: The set of problems that can be 
solved in exponential time
● e.g. Traveling Salesperson, Graph Coloring

● It has not been proved, but it's assumed 
that P != NP



  

Beating Exponential Time
● We have two options to beat exponential 

time algorithms:
● Approximation Algorithms
● Heuristics



  

Approximation Algorithms
● A k-Approximation Algorithm is an 

algorithm that you can prove gets within 
a factor k of an optimal solution in the 
worst case

● A simple 2-Approxmiation Algorithm for 
traveling salesperson...
● Compute a Minimum Spanning Tree of the 

graph and return a “depth first” path of the 
tree



2-Approximation TSP
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WHY????
● Remember we are computing an optimal 

tour – visit every node at least once and 
end at the starting node.

● The cost of every optimal tour is going to 
be less than the cost of a Minimum 
Spanning Tree

● The cost of our MST is a lower bound of 
the cost of an optimal tour
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2-Approximation TSP
● Because we use every edge twice, the 

cost of this tour is going to be twice the 
cost of the MST.

● The cost of the MST is less than or equal 
to the cost of an optimal tour.

● Therefore, the cost of our tour is less 
than or equal to twice the cost of an 
optimal tour.
● Hence, this is a 2-approximation



  

Approximation Algorithms
● Better approximation algorithms exist for 

TSP (but they are more difficult to prove)
● Many approximation algorithms exist for 

different problems in NP



  

Heuristics
● A different Idea: Construct a heuristic 

that will give a “good” solution.
● Even if it performs terribly in the “worst 

case”, it may perform well in “most” cases.

● Nearest Neighbor Heuristic
● Iteratively extend path by picking cheapest 

edge that will get us to an unvisited node
● Works reasonably well with high probability
● Has terrible worst case behavior.

– Okay because worst case is unlikely



  

Limits of Programs

● There are three I want to consider:
● What can't a computer do any faster?
● What can't a computer do fast?
● What can't a computer do at all?



  

A Useful Tool
● It would be incredibly useful if Visual 

Studio and Xcode would detect the 
following issues before running a 
program:
● Infinite Loops/Recursion
● Memory Leaks
● Issues dereferencing NULL and uninitialized 

pointers
● Automatic grading of assignments



  

Problem: It is impossible to write a program 
which can, for all input programs, 

successfully do these tasks!



  

A Useful Tool
● Example: It is impossible to write a 

program that, given any program and 
input, detects if the program will 
terminate on that input.
● Called the Halting Problem
● We say that the Halting Problem is 

undecideable
● Wait...really?



  

What about this?

int main() {

    while (true) {

        cout << “Counter Example?” << endl;

    }

}



  

Or this?

int main() {

    for (int i = 0; i < 10; i++)

        cout << “This isn't hard!” << endl;

}



  

Or even this?

int main() {

    return 0;

}



  

Halting Problem
● For many program-input pairs we can 

easily tell if they terminate.
● We cannot do this for all programs.
● So how can we construct one?

● It's tricky.  Take CS161 to learn more about 
this.

● We're just going to go over the intuition...



  

Proof Sketch
● The way we prove the Halting Problem is 

undecideable is through proof by 
contradiction: we start by assuming 
that it is decideable then derive a 
contradiction.
● Common proof technique for proving 

something cannot exist

● Proof Sketch:
● Assume a program P exists that solves the 

halting problem for all inputs
● Construct a new program Q from P
● Show P cannot decide if Q terminates



  

Proof Intuition
● Constructing Q from P is the heart of the 

proof.
● It's somewhat confusing, but is similar in 

spirit to the following contradiction:
● “The barber of Seville shaves everyone in 

Seville who doesn't shave himself.  Does the 
barber shave himself?”

● Idea is to run P with input P



  

Halting Problem
● As a corollary, many other useful 

questions regarding arbitrary programs 
are also undecideable:
● Memory Leaks?
● Dereferencing NULL pointers?
● Many many more...



  

How Bad is This?
● As a result of this we run into some 

issues...
● Can't prove arbitrary programs are correct – 

need to test them
● Tools to detect memory leaks don't catch 

everything

● Modern tools that detect these types of 
issues can't detect everything, but can 
still be useful.



  

Tomorrow
● Introduction to Machine Learning
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