Machine Learning: Introduction to Supervised Learning

Announcements

- Please fill out course evaluations!
- Can pick up exams after class
 - Extra exams will be in Gates 160
- Criteria posted online later today
 - All regrade requests **must** be made by this Friday
- Aubrey's Office Hours:
 - Wednesday: 12-5PM
 - Thursday: 12-5PM
 - Friday: 12-5PM (for regrade requests)

Buying Houses

 Given housing price data, how can we make generalizations from that data in order to predict housing prices?

Square Feet	Price
500	\$100,000
800	\$200,000
400	\$120,000
550	\$180,000
700	\$250,000
900	\$300,000
300	\$120,000
500	\$200,000
475	\$120,000

Buying Houses

• The line we picked "looked good", but how do we decide what line to pick?

• One idea is to minimize the **error** between our data points and line we choose.

- One idea is to minimize the **error** between our data points and line we choose.
 - Error = sum of the squared distances between the line and our data points
- How do formulate this mathematically?

• The function for a line is:

f(x)=ax+b

• Let's represent our data points symbolically as:

square footage = x_n

 $price = y_n$

• The error between one of our data points and our prediction for that data point is:

$$error = (y_n - f(x_n))^2$$

total error =
$$\sum (y_n - f(x_n))^2$$

• The overall error of our line is:

total error =
$$\sum (y_n - f(x_n))^2$$

- Now that we have a function for our error, we can evaluate the quality of a line we choose
- This still doesn't tell us *how* to pick a line

- Answer: Some relatively straight forward calculus will give us a closed form solution for both **b** and **a**.
 - We can now pick the "best" line!
 - Are we done? (Hint: NO)

• No! 3 questions remain:

• No! 3 questions remain:

1) Does our data *really* fit a line?

• No! 3 questions remain:

1) Does our data *really* fit a line?

2) Did we pick the right error function?

Visualizing Squared Error

Visualizing Squared Error

Squared error puts *a lot* of emphasis on outliers.

• No! 3 questions remain:

Does our data *really* fit a line?
Did we pick the right error function?
Is square footage the best way to predict housing prices?

Square Feet

Buying Houses

Square Feet

Supervised Learning

Alzheimer's?

YES/NO

• **Supervised Learning** is a form of Machine Learning in which you have labeled training data and you train a model to predict these labels

Other Forms of Learning

• **Unsupervised Learning**: Given training data *without labels* tell me something interesting about the data

Other Forms of Learning

• **Reinforcement Learning**: Given an environment and an objective function, learn a model to make choices in the environment.

http://www.dacya.ucm.es/jam/images/MountainCar.jpg

Machine Learning

- When posed with a problem in Machine Learning you have to answer 3 questions:
 - 1) How do I represent my data?
 - Square footage? Number of bathrooms? Quality of nearby schools?
 - 2) What type of function do I want to learn?
 - Line? Parabola?
 - What is our Error function?
 - 3) How do I optimize my model?
 - Gradient Ascent? Solve directly?
 - Matrix factorization?

Other Questions

- What I don't have very much training data?
 - What if you have extra "unlabeled" data?
 - e.g. MRI scans of undiagnosed patients
 - What if you have other types of supervision?
 - e.g. I know these two instances belong to the same cluster, I just don't know which cluster they belong to.
 - What if you know something about the function you're going to learn?
 - e.g. Most of the features are not useful.

Introduction to Perceptrons

Handwriting Analysis

- Train a computer to recognize images of handwritten numbers 0 – 9.
- Large training and test set available (MNIST Handwritten Digit Database)

Classification Problem

- The problem we are considering is a classification problem: given an image, we need to figure what class it belongs to (0, 1, 2, 3, etc.).
- Just to be concrete, we're going to write a program with:
 - Input: Image of a handwritten digit
 - Output: Prediction for what digit the image is

Question 1: How do we represent an image?

X ₁	X ₂	X ₃	X ₄	X ₅
X ₆	X ₇	X ₈	X 9	X ₁₀
X ₁₁	X ₁₂	X ₁₃	X ₁₄	X ₁₅
X ₁₆	X ₁₇	X ₁₈	X ₁₉	X ₂₀
X ₂₁	X ₂₂	X ₂₃	X ₂₄	X ₂₅

X₁ **X**₂ X_3 X_4 **X**₅ **X**₆ . . . **X**_n

Question 2: What function are we trying to optimize?

Question 3: How do we optimize our perceptrons?

How do we choose good values for $w_0 \dots w_n$?

• **Train** the perceptron on valid data.

- **Train** the perceptron on valid data.
- For each data point (image of a digit):

- **Train** the perceptron on valid data.
- For each data point (image of a digit):
 - Ask the perceptron what it thinks.

- **Train** the perceptron on valid data.
- For each data point (image of a digit):
 - Ask the perceptron what it thinks.
 - If correct, do nothing.

- **Train** the perceptron on valid data.
- For each data point (image of a digit):
 - Ask the perceptron what it thinks.
 - If correct, do nothing.
 - Otherwise, nudge $w_0 \dots w_n$ in the right direction.

- **Train** the perceptron on valid data.
- For each data point (image of a digit):
 - Ask the perceptron what it thinks.
 - If correct, do nothing.
 - Otherwise, nudge $w_0 \dots w_n$ in the right direction.
- Repeat until number of errors is "small enough."

- **Train** the perceptron on valid data.
- For each data point (image of a digit):
 - Ask the perceptron what it thinks.
 - If correct, do nothing.
 - Otherwise, nudge $w_0 \dots w_n$ in the right direction.
- Repeat until number of errors is "small enough."
- Question: What kind of mistakes can we make?

False Positive

False Negative

A Nice Math Trick

- For false positives, set $w_i = w_i \alpha x_i$.
- For false negatives, set $w_i = w_i + \alpha x_i$.
- For correct answers, set $w_i = w_i$.
- Let "YES" be 1 and "NO" be 0.
- Consider the difference between actual answer and perceptron guess:
 - False positive: Actually NO, we say YES. Difference is -1.
 - False negative: Actually YES, we say NO. Difference is +1.
 - Correct answer: Both YES or both NO. Difference is 0.
- General update rule: $w_i = w_i + \alpha$ (real guess) x_i .

Perceptron Learning Algorithm

- Start with a random guess of each w_i .
- Repeat until perceptron is sufficiently accurate:
 - Choose a training example $(x_0, x_1, ..., x_n)$.
 - Let **real** be the real answer, **guess** be the perceptron's guess.
 - For each i, set $w_i := w_i + \alpha$ (real guess) x_i

Visualization of **w**!

Combining Perceptrons

This is called a neural network.

Perceptrons

- How "good" are perceptrons?
 - Not very...they have lots of issues.
 - Better algorithms exist for classification
- Chose to cover them because they don't require much math.

Machine Learning

• Interesting in machine learning? Take CS109 and CS229.

Exam Statistics

- Median: 35
- First Quartile: 24
- Third Quartile: 42