

Where to Go from Here

Announcements

● Office hours Today and Tomorrow:
● 12-5PM in Gates 160

Goals for this Course

● Learn how to model and solve
complex problems with computers.

● To that end:
● Explore common abstractions for

representing problems.
● Harness recursion and understand how to

think about problems recursively.
● Quantitatively analyze different approaches

for solving problems.

How do we model real-world
problems in software?

We're going to need a way to model
sequences of data.

So let's study stacks, queues, and vectors.

15 - 3 + 4 * 5 / 6

Buying Cell Towers

137 42 95 272 52

What about associative data?
Or unordered data?

This is where maps, sets,
and lexicons come in.

dik·dik

opts
post
pots
spot
stop
tops

How do we model networks?

We can use graphs, which we can build out
of those tools we just saw!

But how does all of this work?

Idea

4

2

allocated
length

logical
length

element
array

137 42

Linked Lists at a Glance

● A linked list is a data structure for
storing a sequence of elements.

● Each element is stored separately from
the rest.

● The elements are then chained together
into a sequence.

1 2 3 4137

We need a way to compare solutions.

So let's invent big-O notation.

So... how do they compare?

Dikdik Quokka

Dikdik Quokka
Nubian
Ibex

Neither of the implementations is strictly
better than the other!

How might we make maps and sets?

Terpsichore Erato

Polyhymnia Calliope Thalia

Euterpe

Urania

Clio Melpomene

Terpsichore

Erato

Polyhymnia

Calliope

Thalia

Euterpe Urania

Clio Melpomene

As before, neither of these structures is
clearly better than the other!

This hits on a key point:
Engineering is all about trade-offs.

Cool! Now we have a bunch of tools for
modeling problems!

So how do we go about solving them?

1 2 5 8

1 2 5 8

Parking Randomly

0 5x + 1x

Nifty! Some problems are self-similar!

So how do we solve them?

int sumOfDigits(int n) {
 if (n < 10)
 return n;
 else
 return (n % 10) + sumOfDigits(n /
10);
}

void moveTower(int n, char from,
 char temp, char to) {
 if (n > 0) {
 moveTower(n – 1, from, to,
temp);
 moveDisk(from, to);
 moveTower(n – 1, temp, to,
from);
 }
}

All we need to do is figure out a base case
and a recursive step!

What else can we do with recursion?

{ 1, 2, 3 }
{ 1, 2, }
{ 1, 3 }
{ 1 }
{ 2, 3 }
{ 2 }
{ 3 }
{ }

Self-similarity is everywhere!

Programming is all about exploring new
ways to model and solve problems.

The skills you have just learned will follow
you through the rest of your programming

career.

Also, the concepts learned in this class
come up everywhere in Computer Science.

The material you've learned opens up a
huge number of new topics to learn!

Trees

Trees

● Trees + Computational Geometry = k-d Trees

http://docs.pointclouds.org/trunk/group__kdtree.html

Trees

● Trees + Graphics = Adaptive Shadow Maps

http://www.cs.utah.edu/~jmk/images/dynamicShadowMaps.jpg

Trees

● Trees + Information Theory = Huffman Encoding

http://en.wikipedia.org/wiki/File:Huffman_tree_2.svg

Trees

● Trees + Machine Learning = Hierarchical Clustering

http://adios.tau.ac.il/clustree/Clustree_files/image014.jpg

Graphs

Graphs

● Graphs + Networking = Computer Networks

http://icawww1.epfl.ch/cn2/0910/

Graphs

● Graphs + Machine Learning = Probabilistic Graphic
Models

http://song.bayesian.net/index.php/Bayesian_net

Graphs

● Graphs + Computer Vision = Image Segmentation

http://ailab.snu.ac.kr/intro.php

So what comes next?

Courses to Take

CS106B
Programming
Abstractions

CS107
Computer

Organization and
Systems

CS110
Principles of

Computer Systems

CS103
Mathematical

Foundations of
Computing

CS109
Intro to Probability

for Computer
Scientists

CS161
Design and Analysis

of Algorithms

The CS Core
T

h
e
o
ry

S
ys

te
m

s

CS106B
Programming
Abstractions

CS107
Computer

Organization and
Systems

CS110
Principles of

Computer Systems

CS103
Mathematical

Foundations of
Computing

CS109
Intro to Probability

for Computer
Scientists

CS161
Design and Analysis

of Algorithms

The CS Core
T

h
e
o
ry

S
ys

te
m

s

CS106B
Programming
Abstractions

CS107
Computer

Organization and
Systems

CS110
Principles of

Computer Systems

CS103
Mathematical

Foundations of
Computing

CS109
Intro to Probability

for Computer
Scientists

CS161
Design and Analysis

of Algorithms

The CS Core
T

h
e
o
ry

S
ys

te
m

s

Traveling Salesperson

https://www.google.com/maps/vt/data=VLHX1wd2Cgu8wR6jwyh-km8JBWAkEzU4,2bUCUBVs3YYr-KB4ccFl-
1Q1nWYcyKzmW0Ggf8ar4OOyEuuN9txRnTiKzIvmH6qy6B4vSoZvopndG7VjMIsOIDayhdkqKblOykP1wZYm9RcF8-
Y6pkecPwDi3xc98B3gNGLchfR7xnPKzCGEmRocrv9OczmELzORvRseZHLyjWOvL0GzUeg0WFJGA4Y

Seattle

SF

Salt Lake City

Austin

New York
$300

 $600

$800$400

$250

$350

$550

Can computers solve all problems?

Why are some problems harder than others?

How can we be certain about this?

It's all Bits and Bytes!

01000100

01001001

01001011

01000100

01001001

01001011

01001011

01001001

01001011

00100000

00100111

01010010

K

K

K

K

I

I

I

D

D

R

'

S 01010011

It's all Bits and Bytes!

01000100

01001001

01001011

01000100

01001001

01001011

01001011

01001001

01001011

00100000

00100111

01010010

K

K

K

K

I

I

I

D

D

R

'

S 01010011
01001011010010010101001001001011
00100111010100110010000001000100
01001001010010110100010001001001
01001011

CS107
Computer Organization and Systems

How do we encode text, numbers,
programs, etc. using just 0s and 1s?

Where does memory come from?
How is it managed?

How do compilers, debuggers, etc. work?

What CS107 Isn't

● CS107 is not a litmus test for whether you can be
a computer scientist.

● You can be a great computer scientist without
enjoying low-level systems programming.

● CS107 is not indicative of what programming is
“really like.”

● CS107 does a lot of low-level programming. You
don't have to do low-level programming to be a good
computer scientist.

● CS107 is not soul-crushingly impossibly hard.
● It's hard. It does not eat kittens.

● Don't be afraid to try CS107!

Other CS Courses

CS108
Object-Oriented Systems Design

● How do you build large software
systems in a team?

● Introduction to
● Unit-testing frameworks
● Object-oriented design.
● Multithreaded applications.
● Databases and web applications.
● Source control.

● Excellent if you're interested in learning
industrial programming techniques.

● Many offerings throughout the year,
focused on specific technologies:
● CS193A: Android Programming
● CS193C: Client-Side Web Technologies
● CS193I: iOS Programming
● CS193L: Lua Programming
● CS193P: iPhone and iPad programming

● Great for learning particular technologies.

CS193

CS147
Intro to Human-Computer Interaction
● How do you design software to be

usable?
● What are the elements of a good

design?
● How do you prototype and test out

systems?

The CS Minor

The CS Coterm

Outside Stanford

Learning More
● MOOCs: Coursera, Udacity, and edX all offer CS

courses.
● e.g. Check out Udacity's Web Development course at

https://www.udacity.com/course/cs253.

● Explore and play around! There are great resources
for getting unstuck on the internet.

● e.g. Stack Overflow (http://www.stackoverflow.com) is
a place to ask for help on programming-related
questions.

● Read a book! There are great books that introduce
most programming languages and frameworks.

https://www.udacity.com/course/cs253
http://www.stackoverflow.com/

Taking Classes

● Want to come back to Stanford? Take
classes through SCPD!

My Email Address

adgress@cs.stanford.edu

Some Words of Thanks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

