Eric Roberts Handout #50A
CS 106B March 9, 2015

Answers to Practice Final Examination #1

Review session: Sunday, March 15, 3:00-5:00p.m. (Hewlett 200)

Final exam: Tuesday, March 17, 8:30-11:30a.m.
Last names beginning with A-H (Bishop Auditorium)
Last names beginning with I-Z (Cubberley Auditorium)
Please remember that the final is open book

1. Simple algorithmic tracing (5 points)

The nodes are visited in the following order: Mount Doom, Black Gate, Cirith Ungol,
Rauros, Minas Tirith, Edoras, Lorien, Isengard, Caradhras, Moria, Southfarthing, Rivendell,
Hobbiton, Bree.

2. Recursion (15 points)

Function: filenameMatches
Usage: if (filenameMatches (filename, pattern))

This function checks to see whether filename matches the pattern,
which consists of three types of characters:

1. The character ?, which matches any single character
2. The character *, which matches any string of characters
3. Any other character, which matches only that character
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bool filenameMatches (string filename, string pattern) {
if (pattern == "") return (filename == "");
int n = filename.length();
switch (pattern[0]) {
case '?':
if (filename == "") return false;
return filenameMatches (filename.substr(l), pattern.substr(l));
case '*':
for (int i = 0; i <= n; i++) {
if (filenameMatches (filename.substr (i), pattern.substr(l))) {
return true;
}
}
return false;
default:
if (filename == "" || pattern[0] != filename[O]) return false;
return filenameMatches (filename.substr(l), pattern.substr(l));




3. Linear structures and hash tables (15 points)

/*
* Implementation notes: rehash
*

* This code walks through every cell in the old bucket array and reinserts
* the key/value pair into the new hash table.
*/

template <typename KeyType, typename ValueType>

void HashMap<KeyType,ValueType>: :rehash (int nBuckets) {
int oldNBuckets = this->nBuckets;
Cell **oldBuckets = buckets;

this->nBuckets = nBuckets;
count = 0;
buckets = new Cell *[nBuckets];

for (int i = 0; i < nBuckets; i++) {
buckets[i] = NULL;
}
for (int i = 0; i < oldNBuckets; i++) {
for (Cell *cp = oldBuckets[i]; cp != NULL; cp = cp->link) ({
put (cp—->key, cp->value);
}

}
delete[] oldBuckets;

4. Trees (15 points)

Implementation notes: fillVector

The strategy for filling a vector is simply a matter of executing
an inorder traversal of the tree, adding all the nodes before this
one, then the current node, and finally all nodes after this one.
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*/

void fillVector (BSTNode *node, Vector<BSTNode *> & v) {
if (node != NULL) {
fillVector (node->left, v);
v.add (node) ;
fillVector (node->right, v);

Implementation notes: rebuildTree

The rebuildTree method operates by selecting a new root as the
node at the midpoint of the sorted vector. It then recursively
fills in the left and right subtrees by applying the same
strategy one level down.
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BSTNode *rebuildTree (Vector<BSTNode *> & v, int start, int end) {
if (start > end) return NULL;
int mid = (start + end) / 2;
BSTNode *np = v[mid];
np—>left = rebuildTree (v, start, mid - 1);
np—>right = rebuildTree(v, mid + 1, end);
return np;




5. Graphs (15 points)

/* Constants */
const int MAX SUGGESTIONS = 3; /* Maximum number of friend suggestions */
/*
* Function: suggestFriends
* Usage: suggestFriends (g, person);
*
* Makes suggestions for new friends for the specified person in the
* graph. This function lists up to MAX SUGGESTIONS people, sorted
* in descending order by the number of mutual friends.
*/
void suggestFriends (Graph<Node,Arc> & g, Node *person) {
Set<Node *> candidates = g.getNodeSet();
candidates.clear();
for (Node *node g.getNeighbors (person)) {
candidates += g.getNeighbors (node);
}
candidates —-= person;
candidates —-= g.getNeighbors (person);
PriorityQueue<Node *> queue;
for (Node *node candidates) {
queue.enqueue (node, —countMutualFriends (g, person, node));
}
cout << "Friend suggestions:" << endl;
for (int i = 0; i < MAX SUGGESTIONS && !queue.isEmpty(); i++) {
Node *node = queue.dequeue();
int count = countMutualFriends (g, person, node);
string noun = (count == 1) ? "friend" "friends";
cout << " " << node->name << (" << count << " mutual ";
cout << ((count == 1) ? "friend" "friends") << ")" << endl;
}
}
/*
* Function: countMutualFriends
* Usage: int n = countMutualFriends(g, nl, n2);
*
* Returns the number of mutual friends shared by nl and n2 in the
* graph g. You can write this function without passing the graph
* as an argument, but doing so makes it impossible to take advantage
* of the getNeighbors and isConnected methods provided by the Graph
* class.
*/
int countMutualFriends (Graph<Node,Arc> & g, Node *nl, Node *n2) {
int count = 0O;
for (Node *node g.getNeighbors (nl)) {
if (g.isConnected(node, n2)) count++;
}
return count;
}




6. Data structure design (15 points)
6a)

/* Private section */

private:

~
*

Implementation notes: BigInt data structure

The BigInt data structure stores the digits in the number in

a linked list in which the digits appear in reverse order with
respect to the items in the list. Thus, the number 1729 would
be stored in a list like this:

The sign of the entire number is stored in a separate instance
variable, which is -1 for negative numbers and +1 otherwise.
Leading zeros are not stored in the number, which means that
the representation for zero is an empty list.
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* This structure type holds a single digit in the linked list.
*/
struct Cell {
int digit;
Cell *1link;
b

/* Instance variables */

Cell *start; /* Linked list of digits */
int sign; /* Sign of the number (-1 or +1) */

}i




6b)

/*

*

File: bigint.cpp
*

* This file implements the bigint.h interface.

*/

#include <cctype>
#include <string>
#include "bigint.h"
#include "error.h"
using namespace std;

/*
* Implementation notes: BigInt constructor
*
* The code for this constructor offers a minimal implementation
* that matches what we would expect on an exam. In a more
* sophisticated implementation, it would make sense to include
* a test to avoid storing leading zeros in the linked list. 1In
* this implementation, calling BigInt ("00042") creates a
* BigInt with a different internal representation than
* BigInt ("42"), which is probably a bad idea.
*/
BigInt: :BigInt (string str) {
if (str == "" || str == "-") error("BigInt: illegal format");
start = NULL;
sign = 1;
if (str[0] == '-') {
sign = -1;

str = str.substr(1l);
}
int n = str.length();
for (int i = 0; i < n; i++) {
char ch = str[i];
if (!'isdigit(ch)) error("BigInt: illegal format");
Cell *cp = new Cell;
cp—->digit = ch - '0’';
cp—->link = start;
start = cp;




Implementation notes: BigInt destructor

The code for the destructor is similar to that of the other
classes that contain a linked list. You need to store the

pointer to the next cell temporarily so that you still have
it after you delete the current cell.
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BigInt: :~BigInt () {
Cell *cp = start;
while (cp != NULL) {
Cell *next = cp->link;
delete cp;
cp = next;

Implementation notes: toString

This method could also be written as a wrapper method that
calls a recursive function that creates the reversed string
one character at a time. I've used an iterative formulation
here to avoid having to declare the private method in the
bigintpriv.h file.
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string BigInt::toString() {
string str = "";
for (Cell *cp = start; cp != NULL; cp = cp->1link) {
str = char(cp—->digit + '0') + str;
}
if (sign == -1) str = "-" + str;
return str;

7. Short essay (10 points)

Although big-O notation is useful in terms of understanding the qualitative behavior of an
algorithm as a function of the size of the problem, it is—by design—only an approximate
measure. In particular, big-O notation ignores the constant terms, which certainly affect
the actual running time.

In this problem, you are told that the running time of each algorithm is proportional to the
number of comparisons. If you were trying to find the median of 1000 numbers, for
example, the sort-based approach would require 1000 x log, 1000 comparisons, which is
approximately 10,000. The Rivest/Tarjan algorithm would require 15 x 1000 (or 15,000)
comparisons, which is larger. Given the comparison counts for these algorithms, the
sort-based approach will be more efficient as long as log, N < 15, which means as long as
N is less than 32,768 or thereabouts (answers like 32000, 33000, 32767, or 2!5 would all
receive full credit).



