
YEAH!
Huffman Encoding

Brendon Go / 11.10.2015
Adapted from SL Rishi Bedi’s Slides

Compression

A way to represent information using less data:

- “aaabbbccd” -> “3a3b2c1d”
- 9 letters -> 8 letters

Huffman Encoding:

- Characters that occur often should take up less space to
store instead of everything being 8 bits

Huffman Encoding

● “aaaaabbbbz”
○ Uncompressed:

■ 01100001 01100001 01100001 01100001
01100001 01100010 01100010 01100010
01100010 01111010

○ Let a = 0 b = 10 z = 11
■ 00000101 0101011

How do I do Huffman Encoding?

● Count Frequencies
● Make Encoding Tree
● Build Encoding Map
● Encode Text Data

Step 1: Count Frequencies

● Map<int, int> buildFrequencyTable(istream& input);
● example.txt: ab ab cab
● {‘ ’: 2, ‘a’:3, ‘b’:3, ‘c’:1, PSEUDO_EOF: 1}

Relevant Code:

● PSEUDO_EOF
● int ch = input.get(); // reads single character. -1 if EOF

Step 2: Build an Encoding Tree

● Create PriorityQueue of
HuffmanNode*’s with
frequency as priority.

● While there’s more than
one thing in the
PriorityQueue, dequeue
two things

● Combine into one
HuffmanNode* with
Priority as sum of both
things, and character
NOT_A_CHAR

Step 2: Build an Encoding Tree

Relevant Code:

● #include “pqueue.h”
● pq.enqueue(node, priority), pq.dequeue(), pq.size()
● HuffmanNode

○ int character
○ int count
○ HuffmanNode* zero
○ HuffmanNode* one
○ isLeaf()

● NOT_A_CHAR

Step 3: Build an Encoding Map
● Map<int, string> buildEncodingMap(HuffmanNode* encodingTree);
● The code for each character is the path it took to get to the leaf.
● {' ':"00", 'a':"10", 'b':"11", 'c':"010", EOF:"011"}
● Note it’s a map int:string

Step 4: Encode the Text

● {' ':"00", 'a':"10", 'b':"11", 'c':"010", EOF:"011"}
● "ab ab cab"
● -> 101100101100010101101100
● Prefix Property

Relevant Code:

● obitstream
● output.writeBit(int bit) //0 or 1

Step 5: Decoding
● Read inputstream bit by bit.
● Go down the tree
● When you hit a leaf, you decoded that character. Repeat
● Stop when you decode PSEUDO_EOF
● not when you run out of bits to read
● Example: 101100101100010101101100

Relevant Code:

● ibitstream
● input.readBit() //reads 1 or 0 bit. -1 on EOF

Problem: We need the Tree to decode...

Solution: Put the Frequency Table in File

Relevant Code
● output << frequencyTable;
● input >> frequencyTable;
● Above handle printing and reading a frequency table
● rewindStream(input)

Compress:

Build Frequency Table, Build Tree, Build Map, Print
Frequency Table to output, rewind, encode the file to output

Decompress:

Read the Frequency Table, Build Tree, Decode File

FreeTree: free memory used to make tree. Call when
necessary

