
YEAH!
Meta Academy

Sahil Chopra - 1.26.2016
Adapted from SLs Rishi Bedi & Audrey Ho

Create a Teaching Tool For Recursion

1. Demo Recursion By Definition
2. Demo Recursion By Fractals
3. Demo Recursion For Exploration
4. Personal Curriculum
5. Generate Question

Milestone 1: GCD (Recursive By Definition)
int gcd (int a, int b):

// RECURSIVE ALGORITHM

ifx b = 0 gcd(a, b) = a

else gcd(a, b) = gcd(b,a%b)

Milestone 1: GCD (Recursive By Definition)

1) gcd(42,24) // Apply gcd(a, b) = gcd(b,a%b) since b!= 0
2) gcd(24, 18)// Apply gcd(a, b) = gcd(b,a%b) since b!= 0
3) gcd(18, 6) // Apply gcd(a, b) = gcd(b,a%b) since b!= 0
4) gcd(6, 0) // Apply gcd(a, b) = a (Base Case)

Milestone 2: Serpinski (Recursion by Fractals)

Order 1:

Milestone 2: Serpinski (Recursion by Fractals)

Order 2 =
3 “Order-1” Triangles

1 2

3

Milestone 2: Serpinski (Recursion by Fractals)
(x,y) (x+size, y)

60 Degrees

(x+size/2, y + size*sin(60))

Milestone 2: Serpinski (Recursion by Fractals)

Recursive Step: Drawing Order-N Triangle:

● 3 Triangles of Order N-1
● Each Tri. Has ½ a Side Length
● (x_N, y_N) are (x,y) anchor coordinates

for Order-N Tri.

1 2

3

x = x_N
y = y_N
Order = n -1

x = x_N + len/2
y = y_N
Order = n -1

x = x_N + len/4
y = y_N + len* sin(60)/2
Order = n -1

Milestone 3: Flood Fill (Recursion by Exploration)
int floodFill(GBufferedImage& image, int x, int y, int color)

// e.g. floodFill(image, 4, 3, blue)

Milestone 3: Flood Fill (Recursion by Exploration)
● Only fill boxes of old color that we clicked on ...

● How do we keep track of the old color?
○ Helper function lets us keep track of more variables

int floodFillHelper(image, x, y, newColor, oldColor)

● Recursion: What options can we explore for each pixel?

Milestone 4: Personalized Curriculum

Milestone 4: Personalized Curriculum

Milestone 4: Personalized Curriculum
allPrereqsOfConcept(prereqMap, concept){

it’s direct prerequisites and

for (childConcept : direct prerequisites){

allPrereqsOfConcept(prereqMap, childConcept)

}

}

"fractals" → ["recursion"]

"explorationRecursion" → ["recursion"]

"definitionRecursion" → ["recursion"]

"recursion" → ["collections", "functionCalls"]

Q: Make sure to avoid repeating
the same prerequisite multiple
times in your list. How we can
store prerequisites that we have
already listed?

Q: Where should cout <<
statements go, in order to print
the curriculum in the correct
order?

Milestone 5: Generate Question
<s>:<np> <vp> // Non Terminal

<np>:<dp> <adjp> <n>|<pn> // Non Terminal

<dp>:the|a // Non Terminal

<adjp>:<adj>|<adj> <adjp> // Non Terminal

<adj>:big|fat|green|wonderful|faulty|subliminal|pretentious // Terminal

<n>:dog|cat|man|university|father|mother|child|television // Terminal

<pn>:John|Jane|Sally|Spot|Fred|Elmo // Terminal

<vp>:<tv> <np>|<iv> // Non Terminal

<tv>:hit|honored|kissed|helped // Terminal

<iv>:died|collapsed|laughed|wept // Terminal

Milestone 5: Generate Question
● Can Recursively Expand Non-Terminals Until Terminal Reached

Milestone 5: Generate Question
● Base Case: Terminal Reached
● Recursive Step:

○ Get the rules from the map for your current symbol
○ Get a random rule from those rules
○ For each symbol in that rule, recurse adding the result to an output

string separated by a space

Milestone 5: Generate Question
● Question grammars will have a non-terminal <QUESTION>

● To loop over a string expansion you will need to process the string one

"token" at a time where a token could be a non-terminal or a terminal.

TokenScanner scanner(production);

while (scanner.hasMoreTokens()) {

 string token = scanner.nextToken();

 // do something with token

}

