YEAH!

Meta Academy

Sahil Chopra - 1.26.2016

Adapted from SLs Rishi Bedi & Audrey Ho

Create a Teaching Tool For Recursion

1. Demo Recursion By Definition

2. Demo Recursion By Fractals

3. Demo Recursion For Exploration
4. Personal Curriculum

5. Generate Question

ACADEMY

Milestone 1: GCD (Recursive By Definition)

int gecd (int a, int b)

// RECURSIVE ALGORITHM

ifx b

else

0 gcd(a, b)

gcd(a, b)

a

gcd (b, a%b)

[] ® Console

Welcome to Meta Academy. Coming online soon...
Demo recursion by definition

2. Demo recursion for fractals

3. Demo recursion for exploration

4. Personal curriculum

5. Generate question
6.
W

=

Exit
hat do you want? 1

Some operations are much easier to define recursively.
One amazing example of this is Euclid's Algorithm to
calculate the greatest common divisor (gcd). In the
algorithm Euclid famously shows that the gcd(a, b) is
equal to gcd(b, r) where r is the remainder when you
divide a by b. In the case where b is equal to 0,
gcd(a, 0) is simply a. Since gcd is defined
recur51ve1y, it is much easier to program using

at's calculate gcd.

[F] = gcd(24, 18)

gcd(24 18) = gcd(18, 6)

gcd(18, 6) = gcd(6, 0)

gcd(6, 0) =

The greatest common divisor of 42 and 24 is 6
Press enter to return to menu. |

Milestone 1: GCD (Recursive By Definition)

1)
2)
3)
4)

gcd (42,24) // Apply gcd(a, b)
gcd (24, 18)// Apply gcd(a, b)
gcd (18, 6) // Apply gcd(a, b) gcd (b,a%b) since b!= 0
gcd(6, 0) // Apply gcd(a, b) = a (Base Case)

gcd(b,a%b) since b'!'= 0

gcd (b,a%b) since b'!= 0

Milestone 2: Serpinski (Recursion by Fractals)

Order 1:

Milestone 2: Serpinski (Recursion by Fractals)

Order 2 =
3 “Order-1” Triangles

Milestone 2: Serpinski (Recursion by Fractals)
(%,y)

(x+size, y)

l
60 Degrees

(x+size/2, y + size*sin(60))

Milestone 2: Serpinski (Recursion by Fractals)
X=xN %

y=y_N
Order = n -1

x=Xx_N+len/2

y=y_N
Order =n -1

Recursive Step: Drawing Order-N Triangle:

e 3 Triangles of Order N-1
e Each Tri. Has 'z a Side Length

e (x_N,y_ N)are (x,y) anchor coordinates

x=Xx_N+len/4

for Order-N Tri. y =y _N + len* sin(60)/2
Order = n -1

Milestone 3: Flood Fill (Recursion by Exploration

int floodFill (GBufferedImage& image, int x, int y, int color)

// e.g. floodFill (image, 4, 3, blue)

\%:_- ap.....

Milestone 3: Flood Fill (Recursion by Exploration)

e Only fill boxes of old color that we clicked on ...

e How do we keep track of the old color?
o Helper function lets us keep track of more variables

int floodFillHelper (image, x, y, newColor, oldColor)

e Recursion: What options can we explore for each pixel?

Milestone 4: Personalized Curriculum

| N Console | NN Console
Welcome to Meta Academy. Coming online soon... Welcome to Meta Academy. Coming online soon...
|1. Demo recursion by definition 1. Demo recursion by definition
2. Demo recursion for fractals 2. Demo recursion for fractals
|3. Demo recursion for exploration 3. Demo recursion for exploration
4. Personal curriculum 4. Personal curriculum
|5. Generate question 5. Generate question
6. Exit 6. Exit
What do you want? 4 What do you want? 4
What course? recursion What course? csl06b
|[Enter the concept the student would like to learn (or ? Enter the concept the student would like to learn (or ?
[to list concepts): ? to list concepts): dijkstra
|collections The order you should learn concepts:
|definitionRecursion simpleC++
|explorationRecursion abstraction
fractals controlFlow
|functionCalls functionCalls
|recursion passByReference
|[Enter the concept the student would like to learn (or ? maps
[to list concepts): explorationRecursion sets
|The order you should learn concepts: pointers
|simpleC++ graphs
|functionCalls pQueues
|collections big0
|recursion queues
|explorationRecursion BFS
dijkstra

|Press enter to return to menu.
Press enter to return to menu.

Milestone 4: Personalized Curriculum @

¢

. K recursion

exploration
recursion

definition
recursion

Milestone 4: Personalized Curriculum

allPrereqgsOfConcept (preregMap, concept) {
Q: Make sure to avoid repeating

it’s direct prerequisites and the same prerequisite multiple
times in your list. How we can
for (childConcept : direct prerequisites) { store prerequisites that we have

already listed?
allPreregsOfConcept (preregMap, childConcept)

Q: Where should cout <<

} statements go, in order to print
the curriculum in the correct
} order?
"fractals" — ["recursion"]

"explorationRecursion" - ["recursion"]
"definitionRecursion" - ["recursion"]

"recursion" — ["collections", "functionCalls"]

Milestone 5: Generate Question

<s>:<np> <vp>

<np>:<dp> <adjp> <n>|<pn>

<dp>:the|a

<adjp>:<adj>|<adj> <adjp>
<adj>:big|fat|green|wonderful | faulty|subliminal |pretentious
<n>:dog|cat|man|university|father |mother|child|television
<pn>:John|Jane|Sally|Spot|Fred|Elmo

<vp>:<tv> <np>|<iv>

<tv>:hit|honored|kissed|helped
<iv>:died|collapsed|laughed|wept

//
//
//
//
//
//
//
//
//
//

Non Terminal
Non Terminal
Non Terminal
Non Terminal
Terminal
Terminal
Terminal
Non Terminal
Terminal

Terminal

Milestone 5: Generate Question

e Can Recursively Expand Non-Terminals Until Terminal Reached

<>
<np> <Vp>
<pn> <tv> <np>
<dp> <adjp> <n>
S
<adj> <adjp>
v
<adj>
: ‘ \
Fred honored the green wonderful child
Random expansion from sentence. txt grammar for symbol "<s>"

Milestone 5: Generate Question

e Base Case: Terminal Reached
e Recursive Step:
o Get the rules from the map for your current symbol
o Get a random rule from those rules
o For each symbol in that rule, recurse adding the result to an output
string separated by a space

Milestone 5: Generate Question

e Question grammars will have a non-terminal <QUESTION>
e To loop over a string expansion you will need to process the string one

"token" at a time where a token could be a non-terminal or a terminal.

TokenScanner scanner (production) ;
while (scanner.hasMoreTokens()) {
string token = scanner.nextToken() ;

// do something with token

