
YEAH!
Priority Queue

Sahil Chopra  - 2.16.2016
Adapted from SLs Brendon Go & Rishi Bedi



What’s a Priority Queue?

● Queue where elements are enqueued w/ priority rating
● Elements dequeued according to priority rating
● Element w/ priority 0 is higher priority than elements w/ 

priority 1, 2, 3, … 100, etc.

● Example: Routing patients at hospital ER
○ Regardless of arrival time, some cases are more 

urgent & will be handled more quickly (higher priority)



3 Implementations

● Abstraction: Enqueue & Dequeue via “Sorted” Queue
● Implementation:

○ ArrayPriorityQueue
○ LinkedListPriorityQueue
○ HeapPriorityQueue

● Sorted Order:
○ According to priority value
○ Remember smaller integer = greater priority
○ Break priority ties by alphabetical ordering



Methods To Implement
pq.enqueue(value, priority); pq.dequeue();

pq.peek(); pq.peekPriority();

pq.changePriority(value, newPriority); pq.isEmpty();

pq.size(); pq.clear();

out << pq

PriorityyQueue() ~PriorityQueue()



Array PQ

● Unsorted Array for internal data storage
● Private Member Variables (Restricted To):

○ Pointer to internal array of elements
○ Integer for array’s actual capacity
○ Integer for pq’s size

● Enqueue: Add elements to end of array
○ O(N) = ?

● Dequeue: Search array for value w/ greatest priority
○ O(N) = ?



Array PQ

● Enqueue: Add elements to end of array
○ O(N) = 1

● Dequeue: Search array for value w/ greatest priority
○ O(N) = N → Inefficient

 index     0       1       2       3       4       5       6       7       8       9

        +-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

  value | "x":5 | "b":4 | "a":8 | "m":5 | "q":5 | "t":2 |       |       |       |       | 

        +-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

● PQEntry: Class w/ Integer priority and char value



Array PQ
● enqueue(value, priority)

○ add to end of array
○ what do we do when we run out of space (see vector class ex.)

● peek, peekPriority, dequeue
○ go through all elements to find minimum
○ don’t forget to erase when you dequeue
○ what do we do with the gap?

● isEmpty(), size()
○ what values should you consult?

● clear ()
○ do we need to free memory? are other other options?

● changePriority()
○ just change the priority value



Linked List PQ

● Linked List for internal data storage sorted by priority val
● Private Member Variables (Restricted To):

○ Pointer to front of list
● Enqueue: Find appropriate place in sorted linked list

○ O(N) = ?
● Dequeue: Remove from the front of the linked list

○ O(N) = ?



Linked List PQ

● Enqueue: Find appropriate place in sorted linked list
○ O(N) = N 

● Dequeue: Remove from the front of the linked list
○ O(N) = 1



Linked List PQ - Enqueue “O” w/ Priority 5



Linked List PQ - Enqueue “O” w/ Priority 5



Linked List PQ - Enqueue “O” w/ Priority 5



Linked List PQ
● enqueue(value, priority)

○ traverse linked list until insertion point is located
● peek, peekPriority, dequeue

○ examine front of linked list
● isEmpty(), size()

○ what does “front” equal if linked list is empty? 
○ how do we determine size w/out variable?

● clear ()
○ do we need to free memory? 

● changePriority()
○ find and remove list node
○ enqueue list node w/ new priority value



Heap PQ

● Binary Heap sorted by priority val
● Private Member Variables (Restricted To):

○ Pointer to array: *PQEntry[]
○ Int - Array Capacity & Int - PQ Size

● Enqueue: Place at end of array and “bubble up”
○ O(N) = ?

● Dequeue: Remove from front of array, select last element, 
place at the front, and “bubble down”
○ O(N) = ?



Heap PQ
index     0       1       2       3       4       5       6       7       8       9 

      +-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+ 

value |       | "t":2 | "m":5 | "b":4 | "x":5 | "q":5 | "a":8 |       |       |       | 

      +-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

size = 6 

capacity = 10

Remember:
- element at index i has two children at 2*i and 2*i+1 
- parent has higher priority (smaller value) than children
- skip element at index 0 to make math easier



Heap PQ - Enqueue “y” w/ Val 3
index     0       1       2       3       4       5       6       7       8       9 

      +-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+ 

value |       | "t":2 | "m":5 | "b":4 | "x":5 | "q":5 | "a":8 |       |       |       | 

      +-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

size = 6 

capacity = 10

- Add y:3 at index at 7, examine parent at index 3
- b:4 < y:3 so swap elements at index 3 and 7
- Examine parent at index 1, y:3 < t:2 so stop

index     0       1       2       3       4       5       6       7       8       9 

      +-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+ 

value |       | "t":2 | "m":5 | "y":3 | "x":5 | "q":5 | "a":8 | "b":4 |       |       |

      +-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

size = 7 

capacity = 11



Heap PQ - Dequeue 
index     0       1       2       3       4       5       6       7       8       9 

      +-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+ 

value |       | "t":2 | "m":5 | "y":3 | "x":5 | "q":5 | "a":8 | "b":4 |       |       |

      +-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

size = 7 

capacity = 11

- Remove t:2 from index 1, place b:4 from index 7 at index 1 to replace t:2

index     0       1       2       3       4       5       6       7       8       9 

      +-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+ 

value |       | "b":4 | "m":5 | "y":3 | "x":5 | "q":5 | "a":8 | |       |       |

      +-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

size = 6 

capacity = 10



Heap PQ - Dequeue 
index     0       1       2       3       4       5       6       7       8       9 

      +-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+ 

value |       | "b":4 | "m":5 | "y":3 | "x":5 | "q":5 | "a":8 | |       |       |

      +-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

size = 6

capacity = 10

- Examine children at indices 3 and 4, b:4 < y:3 so swap them
- Examine children at index 6, b:4 > a:8 so stop

index     0       1       2       3       4       5       6       7       8       9 

      +-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+ 

value |       | "y":3 | "m":5 | "b":4 | "x":5 | "q":5 | "a":8 |       |       |       |

      +-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

size = 6 

capacity = 10



Heap PQ
● enqueue(value, priority)

○ “bubble up” = compare w/ parent & swap if necessary (iterative or recursive?)
○ remember to resize the array if all slots are filled

● dequeue()
○ remove at index 1, move last element to index 1
○ “bubble down” = compare w/ child & swap if necessary (iterative or recursive?)

● peek, peekPriority()
○ look at index 1 in array

● isEmpty(), size()
○ examine capacity and size variables

● clear ()
○ do we need to free memory?  if not, where should we free the memory?

● changePriority()
○ change priority value & then bubble up (can only make items more urgent)


