CS106B Chris Piech
Winter 2016 March 12", 2016

Pointers

In C++ you can “dynamically allocate” memory. That means that at any point in your program
execution you can specially request space to store new variables. Unlike variables declared on
the stack, a variable stay allocated until the programmer explicitly releases or “frees” it.

The mechanism for accessing such memory is through pointers: special variables that store
memory addresses. When one requests dynamically allocated memory, a pointer is returned.

Dynamic Allocation

There are two ways to request memory: you can ask for a single variable or you could ask for an
array of variables:

Point * pointAddress = new Point; // allocates a single “point”
Point * pointArray = new Point[3]; // allocates 3 points.

And here is a picture of what happens in memory. pointAddress stores the address of its pointee:

Stack Heap
pointAddress 68 pointArray[0] I I 40
pointArray 40 I_I 44
pointArray[1] 48
52
pointArray|[2] 56
60
64
pointAddress->x 68
pointAddress->y 72

In this simple memory picture, each bucket of memory on the heap has an address (valued 40
through 72). Each allocated point gets two buckets (for the x and y components). The pointers
pointAddress and pointArray are variables that live on the stack and hold addresses of memory
on the heap.



Pointer Types

We have just introduced a new variable type. The “pointer”. It is a stack variable that stores an
address. You can tell a variable is a pointer if its type ends with a *.

Type Meaning

int * Address of an int
Point * Address of a point
Set<int> * Address of a Set<int>

Accessing Pointees

How do you get and set the values of the variables we are pointing too (pointees)?

Single variable dynamic allocation:
If a class or struct was dyammically allocated, we can apply the -> operator to its pointer to
access the pointee’s members values or to call methods on the pointee.

pointAddres->x = 5; // makes the pointee x = 5
cout << pointAddress->y; // gets the pointeee y

Array dynamic allocation:
If an array of pointees were created, you can get the ith value using bracket notation.

pointArray[0].x = 5 // sets the x value of the first element
cout << pointArray[l].y; // gets the y value of the second element
Assignment

You can use the = operator to copy a pointers address. Then two pointers point to the same
pointee. This is called “sharing”.

Point * a
Point * b

new Point; // allocates a single “point”
aj



Delete

When you use the new keyword to allocate memory, that memory persists until you tell the
computer it can re-use it (or your program exits). To free the memory, use the keyword delete:

delete pointAddress; // how to delete a single variable
delete[] pointArray; // how to delete an array.
Other Operators

There are a few other special operators that you can perform related to pointers. We don’t
emphasize them in CS106B and you won’t need to know them for the final. | included them
here for full measure.

Pointer Operator Meaning
& Get the address of a variable
* Get the pointee on the other side of the pointer.

Important: The * operator is not to be confused with the much more common use of * as part

of a variable type name.

int stackInt = 5;
Point * a = &stackInt; // a points to the address of stackInt
cout << *a // prints 5



