Page 1 of 5

Cs106B Instructor: Cynthia Lee

Spring 2016 Solutions

PRACTICE FINAL EXAM 3 - SOLUTIONS

1. Sorting

ofjoJole
OOC

Circle: YES

3. BST
(5,2) (5,5)
(5,5) (5,5)
\ \
(9,3) (9,3)
/
(6,12)
(5,5) (5,5)
\ \
(9,3) (9,3)
/ /
(6,12) (6,12)
\ \
(7,5) (7,5)
\
(8,1)
4. Trees

Node* makeTree(Stack<Node*>& expression) {

Node* tree = NULL;

if (!expression.isEmpty()) {
tree = expression.pop();
if (current->operator

tree->left =
tree->right

}

return tree;

}
5. Hashing

struct node {
int val;
node* left;
node* right;

s

const int P

const int Q

715827883;
2796203;

I+l){
makeTree(expression);
makeTree(expression);

Page 2 of 5

Map<int, Vector<node*>> simulateTreeHash(Vector<node*> trees, int k) {
Map<int, Vector<node*>> result;

for (node* root : trees) {

Page 3 of 5

int key = hash(root, k);
result[key] += root;

}

return result;

}

int hash(node *root, int k) {
if(root == NULL) return 1;
return (P * hash(root->left, k) * h(root->val)
+ Q * hash(root->right, k)) % k;

6. Graphs and Classes

/* This solution uses some structs and a Map to implement its own version of
* Graph ADT, using the Adjacency List style of Graph representation that we
* learned in class (instead of the full BasicGraph class). It is also
* reasonable to solve it with BasicGraph.

*/

class LifeGame {

public:
void initializeCells(string filename);
void updateCells();
void printCells();

private: //this may be more space than you need

struct edge {
int start;
int end;
int weight;

}

struct cell {
Vector<edge> friends;
bool alive;

}
Map<int, cell> graph;

getFriends(int center, int dist, Set<int> result);
countFriends(int center);

s
static const int MAXDIST = 20;

#include <iostream>

void LifeGame::initializeCells(string filename){

Page 4 of 5

ifstream myfile;
myfile.open(filename);
int numCells;
myfile >> numCells;
for (int i = @; i < numCells; i++) {
graph[i].alive = getRandomInteger(e, 1);
for (int j = 0; j < numCells; j++) {
int weight;
myfile >> weight;
if (weight > @) {
edge e = {i, j, weight};
graph[i].friends += e;

}
void LifeGame: :updateCells() {

Map<int, int> counts;
for (int key : graph) {
counts[key] = countFriends(key);
}
for (int key : graph) {
if (counts[key] < 2 || counts[key] > 3) {
graph[key].alive = false;
} else if (counts[key] == 3) {
graph[key].alive = true;
}
}
}

void LifeGame: :getFriends(int center, int dist, Set<int>& result){
if (result.contains(center)) return; // We’ve been here before
result.add(center);
for (edge e : graph[center].neighbors) {
if (dist >= e.weight) {
getFriends(e.end, dist - e.weight, result);
}
}
}

int LifeGame::countFriends(int center) {
Set<int> friends;
getFriends(center, MAXDIST, friends);
int count = 0;
for (int friendID : friends) {

Page 5 of 5

if (graph[friendID].alive) count++;
}

return count;

