
Page 1 of 5

CS106B

Spring 2016

Instructor: Cynthia Lee

Solutions

PRACTICE FINAL EXAM 3 - SOLUTIONS

1. Sorting

9 4 8 5 1 2 3 7 6

4 9 8 5 1 2 3 7 6

4 8 9 5 1 2 3 7 6

4 5 8 9 1 2 3 7 6

1 4 5 8 9 2 3 7 6

1 2 4 5 8 9 3 7 6

1 2 3 4 5 8 9 7 6

1 2 3 4 5 7 8 9 6

1 2 3 4 5 6 7 8 9

2. Heap

Circle: YES

Page 2 of 5

3. BST

(5,2) (5,5)

(5,5)
 \
 (9,3)

(5,5)
 \
 (9,3)
 /
 (6,12)

(5,5)
 \
 (9,3)
 /
 (6,12)

 \
 (7,5)

(5,5)
 \
 (9,3)
 /
 (6,12)

 \
 (7,5)
 \
 (8,1)

4. Trees

Node* makeTree(Stack<Node*>& expression) {

 Node* tree = NULL;

 if (!expression.isEmpty()) {

 tree = expression.pop();

 if (current->operator == '+') {

 tree->left = makeTree(expression);

 tree->right = makeTree(expression);

 }

 }

 return tree;

}

5. Hashing

struct node {

 int val;

 node* left;

 node* right;

};

const int P = 715827883;

const int Q = 2796203;

Map<int, Vector<node*>> simulateTreeHash(Vector<node*> trees, int k) {

 Map<int, Vector<node*>> result;

 for (node* root : trees) {

Page 3 of 5

 int key = hash(root, k);

 result[key] += root;

 }

 return result;

}

int hash(node *root, int k) {

 if(root == NULL) return 1;

 return (P * hash(root->left, k) * h(root->val)

 + Q * hash(root->right, k)) % k;

}

6. Graphs and Classes

/* This solution uses some structs and a Map to implement its own version of

 * Graph ADT, using the Adjacency List style of Graph representation that we

 * learned in class (instead of the full BasicGraph class). It is also

 * reasonable to solve it with BasicGraph.

 */

class LifeGame {

public:

 void initializeCells(string filename);

 void updateCells();

 void printCells();

private: //this may be more space than you need

 struct edge {

 int start;

 int end;

 int weight;

 }

 struct cell {

 Vector<edge> friends;

 bool alive;

 }

 Map<int, cell> graph;

 getFriends(int center, int dist, Set<int> result);

 countFriends(int center);

};

static const int MAXDIST = 20;

#include <iostream>

void LifeGame::initializeCells(string filename){

Page 4 of 5

 ifstream myfile;

 myfile.open(filename);

 int numCells;

 myfile >> numCells;

 for (int i = 0; i < numCells; i++) {

 graph[i].alive = getRandomInteger(0, 1);

 for (int j = 0; j < numCells; j++) {

 int weight;

 myfile >> weight;

 if (weight > 0) {

 edge e = {i, j, weight};

 graph[i].friends += e;

 }

 }

 }

}

void LifeGame::updateCells() {

 Map<int, int> counts;

 for (int key : graph) {

 counts[key] = countFriends(key);

 }

 for (int key : graph) {

 if (counts[key] < 2 || counts[key] > 3) {

 graph[key].alive = false;

 } else if (counts[key] == 3) {

 graph[key].alive = true;

 }

 }

}

void LifeGame::getFriends(int center, int dist, Set<int>& result){

 if (result.contains(center)) return; // We’ve been here before

 result.add(center);

 for (edge e : graph[center].neighbors) {

 if (dist >= e.weight) {

 getFriends(e.end, dist – e.weight, result);

 }

 }

}

int LifeGame::countFriends(int center) {

 Set<int> friends;

 getFriends(center, MAXDIST, friends);

 int count = 0;

 for (int friendID : friends) {

Page 5 of 5

 if (graph[friendID].alive) count++;

 }

 return count;

}

