
Programming Abstractions

Cynthia Lee

C S 1 0 6 B

Topics du Jour:

 Make your own classes! (cont.)

› Last time we did a BankAccount class (pretty basic)

› This time we will do something more like the classes you have used from the

Stanford libraries

 Arrays in C++

› In order to implement our version of a Vector (we’re calling it ArrayList), we will

need an array

2

CS106B Weeks 1-3:

Learn to use the car

CS106B Weeks 4-8:

Learn to make the car

Relevant: Trailer to “The Love Bug (Herbie)” (1968)

https://www.youtube.com/watch?v=ay3GgrYEa1M

https://www.youtube.com/watch?v=ay3GgrYEa1M

Arrays in C++

(w e w i l l n e e d o n e f o r o u r

A r r a y L i s t c l a s s)

Arrays (11.3)

type* name = new type[length];

› A dynamically allocated array.

› The variable that refers to the array is a pointer.

› The memory allocated for the array must be manually released,

or else the program will have a memory leak. (>_<)

 Another array creation syntax that we will not use:

type name[length];

› A fixed array; initialized at declaration; can never be resized.

› Stored in a different place in memory; the first syntax uses the

heap and the second uses the stack. (discussed later)

Initialized?

type* name = new type[length]; // uninitialized

type* name = new type[length](); // initialize to 0

› If () are written after the array [], it will set all array elements to
their default zero-equivalent value for the data type. (slower)

› If no () are written, the elements are uninitialized, so whatever
garbage values were stored in that memory beforehand will be
your elements.

int* a = new int[3];
cout << a[0]; // 2395876
cout << a[1]; // -197630894

int* a2 = new int[3]();
cout << a[0]; // 0
cout << a[1]; // 0

How a Vector works

Inside a Vector is an array storing the elements you have added.

 Typically the array is larger than the data added so far, so that it

has some extra slots in which to put new elements later.

› When we say size, we mean the number of items currently

stored, and we say capacity to refer to the total space.

Vector<int> v;
v.add(42);
v.add(-5);
v.add(17);

index 0 1 2 3 4 5 6 7 8 9

value 0 0 0 0 0 0 0 0 0 0

size capacity

Implementing our
ArrayList

M a k i n g o u r o w n c o n t a i n e r

c l a s s !

Exercise

Let's write a class that implements a growable array of integers.

 We'll call it ArrayList. It will be very similar to the C++ Vector.

 its behavior:

› add(value) insert(index, value)

› get(index), set(index, value)

› size(), isEmpty()

› remove(index)

› indexOf(value), contains(value)

› toString()

...

We'll start with an array of length (capacity) 10 by default, and

grow it as needed.

ArrayList.h

#ifndef _arraylist_h
#define _arraylist_h
#include <string>
using namespace std;

class ArrayList {
public:

ArrayList();
void add(int value);
void clear();
int get(int index) const;
void insert(int index, int value);
bool isEmpty() const;
void remove(int index);
void set(int index, int value);
int size() const;
string toString() const;

private:
int* myElements; // array of elements
int myCapacity; // length of array
int mySize; // number of elements added

};

#endif

Implementing add (bug)

// in ArrayList.cpp
// BUG
// Socrative: what is the bug in this code?
void ArrayList::add(int value) {

myElements[mySize] = value;
}

Implementing add

How do you append to the end of a list? list.add(42);

 place the new value in slot number size

 increment size

index 0 1 2 3 4 5 6 7 8 9

value 3 8 9 7 5 12 0 0 0 0

size 6 capacity 10

index 0 1 2 3 4 5 6 7 8 9

value 3 8 9 7 5 12 0 0 0 0

size capacity

Implementing insert

How do you insert in the middle of a list? list.insert(3, 42);

 shift elements right to make room for the new element

 increment size

Q: In which direction should our array-shifting loop traverse?

A. left-to-right B. right-to-left C. either is fine

index 0 1 2 3 4 5 6 7 8 9

value 3 8 9 7 5 12 0 0 0 0

size 6 capacity 10

index 0 1 2 3 4 5 6 7 8 9

value 3 8 9 42 7 5 12 0 0 0

size 7 capacity 10

insert solution

// in ArrayList.cpp
void ArrayList::insert(int index, int value) {

// shift right to make room
for (int i = mySize; i > index; i--) {

myElements[i] = myElements[i - 1];
}
myElements[index] = value;
mySize++;

}

Implementing clear

How do you clear the list? list.clear();

 change size to 0

 do we need to zero out all the data?

index 0 1 2 3 4 5 6 7 8 9

value 3 8 9 7 5 12 0 0 0 0

size 6 capacity 10

index 0 1 2 3 4 5 6 7 8 9

value 3 8 9 7 5 12 0 0 0 0

size capacity

Other members

Let's implement the following member functions in our list:

 size() - Returns the number of elements in the list.

 get(index) - Returns the value at a given index.

 set(index, value) - Changes the value at the given index.

 isEmpty() - Returns true if list contains no elements.

› (Why bother to write this if we already have a size function?)

 toString() - String of the list such as "{4, 1, 5}".

 operator << - Make the list printable to cout

Other members code

// in ArrayList.cpp
int ArrayList::get(int index) {

return myElements[index];
}

void ArrayList::set(int index, int value) {
myElements[index] = value;

}

int ArrayList::size() {
return mySize;

}

bool ArrayList::isEmpty() {
return mySize == 0;

}

Other members code

// in ArrayList.cpp
ostream& operator <<(ostream& out, const ArrayList& list) {

out << "{";
if (!list.isEmpty()) {

out << list.get(0);
for (int i = 1; i < list.size(); i++) {

out << ", " << list.get(i);
}

}
out << "}";
return out;

}

string ArrayList::toString() const {
ostringstream out;
out << *this;
return out.str();

}

Implementing remove

How do you remove an element from a list? list.remove(2);

 shift elements left to cover the deleted element

 decrement size

Q: In which direction should our array-shifting loop traverse?

A. left-to-right B. right-to-left C. either is fine

index 0 1 2 3 4 5 6 7 8 9

value 3 8 9 7 5 12 0 0 0 0

size 6 capacity 10

index 0 1 2 3 4 5 6 7 8 9

value 3 8 7 5 12 0 0 0 0 0

size 5 capacity 10

remove solution

// in ArrayList.cpp
void ArrayList::remove(int index) {

// shift left to cover up the slot
for (int i = index; i < mySize; i++) {

myElements[i] = myElements[i + 1];
}
myElements[mySize - 1] = 0;
mySize--;

}

Freeing array memory

delete[] name;

› Releases the memory associated with the given array.

› Must be done for all arrays created with new

• Or else the program has a memory leak. (No garbage
collector like Java)

• Leaked memory will be released when the program exits, but
for long-running programs, memory leaks are bad and will
eventually exhaust your RAM.

int* a = new int[3];
a[0] = 42;
a[1] = -5;
a[2] = 17;
for (int i = 0; i < 3; i++) {

cout << i << ": " << a[i] << endl;
}
...
delete[] a;

Destructor (12.3)

// ClassName.h // ClassName.cpp
~ClassName(); ClassName::~ClassName() { ...

destructor: Called when the object is deleted by the program.

(when the object goes out of {} scope; opposite of a constructor)

 Useful if your object needs to do anything important as it dies:

› saving any temporary resources inside the object

› freeing any dynamically allocated memory used by the object's

members

› ...

 Does our ArrayList need a destructor? If so, what should it do?

Destructor solution

// in ArrayList.cpp
void ArrayList::~ArrayList() {

delete[] myElements;
}

Running out of space

What if the client wants to add more than 10 elements?

 list.add(75); // add an 11th element

 Answer: Resize the array to one twice as large.

› Make sure to free the memory used by the old array!

index 0 1 2 3 4 5 6 7 8 9

value 3 8 9 7 5 12 4 8 1 6

size 10 capacity 10

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

value 3 8 9 7 5 12 4 8 1 6 75 0 0 0 0 0 0 0 0 0

size 11 capacity 20

Resize solution

// in ArrayList.cpp
void ArrayList::checkResize() {

if (mySize == myCapacity) {
// create bigger array and copy data over
int* bigger = new int[2 * capacity]();
for (int i = 0; i < myCapacity; i++) {

bigger[i] = myElements[i];
}
delete[] myElements;
myElements = bigger;
myCapacity *= 2;

}
}

Problem: size vs. capacity

What if the client accesses an element past the size?

list.get(7)

 Currently the list allows this and returns 0.

› Is this good or bad? What (if anything) should we do about

it?

index 0 1 2 3 4 5 6 7 8 9

value 3 8 9 7 5 0 0 0 0 0

size 5 capacity 10

Private helpers

// in ClassName.h file
private:

returnType name(parameters);

a private member function can be called only by its own class

 your object can call the "helper" function, but clients cannot

call it

void ArrayList::checkIndex(int i, int min, int max) {
if (i < min || i > max) {

throw "Index out of range";
}

}

Extra topic:
Template classes

S o m e t h i n g t h a t S t a n f o r d

l i b r a r y c o n t a i n e r s h a v e t h a t

o u r A r r a y L i s t l a c k s .

Template function (14.1-2)

template<typename T>
returntype name(parameters) {

statements;
}

Template: A function or class that accepts a type parameter(s).

 Allows you to write a function that can accept many types of data.

 Avoids redundancy when writing the same common operation on

different types of data.

 Templates can appear on a single function, or on an entire class.

 FYI: Java has a similar mechanism called generics.

Template func example

template<typename T>
T max(T a, T b) {

if (a < b) { return b; }
else { return a; }

}

 The template is instantiated each time you use it with a new type.

› The compiler actually generates a new version of the code each

time.

› The type you use must have an operator < to work in the above

code.

int i = max(17, 4); // T = int
double d = max(3.1, 4.6); // T = double
string s = max(string("hi"), // T = string

string("bye"));

Template class (14.1-2)

Template class: A class that accepts a type parameter(s).

 In the header and cpp files, mark each class/function as templated.

 Replace occurrences of the previous type int with T in the code.

// ClassName.h
template<typename T>
class ClassName {

...
};

// ClassName.cpp
template<typename T>
type ClassName::name(parameters) {

...
}

Recall: ArrayList.h

class ArrayList {
public:

ArrayList();
~ArrayList();
void add(int value);
void clear();
int get(int index) const;
void insert(int index, int value);
bool isEmpty() const;
void remove(int index);
void set(int index, int value) const;
int size() const;
string toString() const;

private:
int* elements;
int mysize;
int capacity;
void checkIndex(int index, int min, int max) const;
void checkResize();

};

Template ArrayList.h

template <typename T> class ArrayList {
public:

ArrayList();
~ArrayList();
void add(T value);
void clear();
T get(int index) const;
void insert(int index, T value);
bool isEmpty() const;
void remove(int index);
void set(int index, T value) const;
int size() const;
string toString() const;

private:
T* elements;
int mysize;
int capacity;
void checkIndex(int index, int min, int max) const;
void checkResize();

};

Template ArrayList.cpp

template <typename T>
ArrayList<T>::ArrayList() {

myCapacity = 10;
myElements = new T[myCapacity];
mySize = 0;

}

template <typename T>
void ArrayList<T>::add(T value) {

checkResize();
myElements[mySize] = value;
mySize++;

}

template <typename T>
T ArrayList<T>::get(int index) const {

checkIndex(index, 0, mySize - 1);
return myElements[index];

}

...

Template .h and .cpp

Because of an odd quirk with C++ templates, the separation between .h

header and .cpp implementation must be reduced.

 Either write all the bodies in the .h file (suggested),

 Or #include the .cpp at the end of .h file to join them together.

// ClassName.h
#ifndef _classname_h
#define _classname_h

template<typename T>
class ClassName {

...
};

#include "ClassName.cpp"
#endif // _classname_h

