Programming Abstractions
CS1068B

Cynthia Lee

Stanford University

Topics du Jour:

= Make your own classes! (cont.)
» Last time we did a BankAccount class (pretty basic)

» This time we will do something more like the classes you have used from the
Stanford libraries

= Arrays in C++

> In order to implement our version of a Vector (we’re calling it ArrayList), we will
need an array

Stanford University

CS106B Weeks 1-3:
Learn to use the car

CS106B Weeks 4-8:
Learn to make the car

. iy,

LA
{{!S...\

Relevant: Trailer to “The Love Bug (Herbie)” (1968)

https://www.youtube.com/watch?v=ay3GarYEalM

Stanford University

https://www.youtube.com/watch?v=ay3GgrYEa1M

Arrays in C++

(we will need one for our
ArraylList class)

Stanford University

Arrays (11.3)

type* name = new type[length];

» Adynamically allocated array.
» The variable that refers to the array is a pointer.

» The memory allocated for the array must be manually released,
or else the program will have a memory leak. (>_<)

= Another array creation syntax that we will not use:
type name| length];
» Afixed array; initialized at declaration; can never be resized.

» Stored in a different place in memory; the first syntax uses the
heap and the second uses the stack. (discussed later)

Stanford University

Initialized?

type* name
type* name

new type[length]; // uninitialized
new type[length](); // initialize to ©

» If () are written after the array [], it will set all array elements to
their default zero-equivalent value for the data type. (slower)

» If no () are written, the elements are uninitialized, so whatever
garbage values were stored in that memory beforehand will be
your elements.

int* a = new int[3];

cout <«
cout <«

int* a2
cout <«
cout <«

a[e];
a[1];

= new int[3]();
al@];
a[1];

// 2395876
// -197630894

// ©
// ©

Stanford University

How a Vector works

Inside a Vector is an array storing the elements you have added.

= Typically the array is larger than the data added so far, so that it
has some extra slots in which to put new elements later.

» When we say size, we mean the number of items currently
stored, and we say capacity to refer to the total space.

Vector<int> v;

v.add(42);
v.add(-5); .
v.add(17); value T2\ -5 |17
size = capacity YO

Stanford University

Implementing our
ArrayList

Making our own container
class!

Stanford University

Exercise

Let's write a class that implements a growable array of integers.
= We'll call it ArrayList. It will be very similar to the C++ Vector.

= jts behavior:

» add(value) insert(index, value)
» get(index), set(index, value)
» size(), isEmpty()

> remove (index)
» indexOf (value), contains(value)
» toString()

= We'll start with an array of length (capacity) 10 by default, and
grow it as needed.

Stanford University

ArrayList.h

#ifndef _arraylist h
#define _arraylist_h
#include <string>

using namespace std;

class Arraylist {
public:
ArrayList();
void add(int value);
void clear();
int get(int index) const;
void insert(int index, int value);
bool isEmpty() const;
void remove(int index);
void set§int index, int value);
int size() const;
string toString($ const;
private:
int* myElements; // array of elements
int myCapacity; // length of array
int mySize; // number of elements
J

tendif

added

Stanford University

Implementing add (bug)

// in ArraylList.cpp

// BUG

// Socrative: what is the bug in this code?

void ArraylList::add(int value) {
myElements[mySize] = value;

}

Stanford University

Implementing add
How do you append to the end of a list? 1list .ad

= place the new value in slot number size
" increment size

value | 3 8 9 7 5 | 12
size 6 capacity 10

value| 3 | 8 | 9 | 7 | 5 | 12 4;2

size —/ capacity /O

¢

Stanford University

Implementing insert

How do you insert in the middle of a list? list.insert(3, 42);
= shift elements right to make room for the new element L{ij =

= jncrement size ﬂ P \)p\;\\,lg/\’/t{}\/\w\

TTT iy €
value | 3 | 8 | 9 7 |5)12
size 6 capacity \1‘0/ ~

value | 3 8 9 |42 | 7 5] 12
size 7 capacity 10

Q: In which directia
A. left-to-righ

rray-shifting loop traverse?
B. right-to-left Cwither is fine

Stanford University

insert solution

// in ArraylList.cpp

void ArraylList::insert(int index, int value) {
// shift right to make room
for (int i = mySize; i > index; i--) {

myElements[i] = myElements[i - 1];

}
myElements[index] = value; & —
mySize++;

Stanford University

Implementing clear

How do you clear the list? list.clear();
= change sizeto O
= do we need to zero out all the data?

value | 3 8 9 7 5 | 12
size 6 capacity 10

value | 3 8 9 7 5 | 12
size Q capacity | ©

Stanford University

Other members

Let's implement the following member functions in our list:

Returns the number of elements in the list.

Returns the value at a given index.

Changes the value at the given index.

= isEmpty() Returns true if list contains no elements.
» (Why bother to write this if we already have a size function?)

= size()
= get(index)
» set(index, value)

= toString() - String of the list such as "{4, 1, 5}".
= operator << - Make the list printable to cout

Stanford University

Other members code

// in ArraylList.cpp
int ArraylList::get(int index) {
return myElements[index];

}

void ArraylList::set(int index, int value) {
myElements[index] = value;

}

int ArraylList::size() {
return mySize;

}

bool ArraylList::isEmpty() {
return mySize == 0;

}

Stanford University

Other members code

// in ArraylList.cpp
ostream& operator <<Q€§££§£E§:§EE;7const ArraylList& list) {
out << {37~

J

if (!list.isEmpty()) {
out << llst get(O),

return out;
} —

string ArraylList::toString() const {
ostringstream out;
out << *this;
return out.str();

Stanford University

Implementing remove

How do you remove an element from a list? list.remove(2);
= shift elements left to cover the deleted element
= decrement size

7)L MJ
value | 3 | 8 | 9 | 7))

size 6 capacity 10

value | 3 8 7 5 | 12
size 5 capacity 10

Q: In which direction should our array-shifting loop traverse?

t-to-right B. right-to-left C. either is fine

Stanford University

remove solution

// in ArraylList.cpp
void ArraylList::remove(int index) {
// shift left to cover up the slot
for (int i = index; 1 < mySize; i++) {
myElements[i] = myElements[i + 1];

}
———myElementsmySize —11—="10;
mySize--;

}

Stanford University

Freeing array memory

delete[] name;
» Releases the memory associated with the given array.
» Must be done for all arrays created with new

» Or else the program has a memory leak. (No garbage
collector like Java)

« Leaked memory will be released when the program exits, but
for long-running programs, memory leaks are bad and will
eventually exhaust your RAM.

C:j;;;__;—‘-new int[B];:D
alo] = 425
al[l] = -5;
a[2] = 17;

for (1nt i=0; 1< 3; i++) {
cout << i << ": " << a[i] << endl;

}
Aéiete[] a;

Stanford University

Destructor (12.3)
ClassName . h // ClassName.cpp
@assName(); ClassName: :~ClassName() { ...

destructor: Called when the object is deleted by the program.
(when the object goes out of {} scope; opposite of a constructor)

= Useful if your object needs to do anything important as it dies:
» saving any temporary resources inside the object

» freeing any dynamically allocated memory used by the object's
members

= Does our ArraylList need a destructor? If so, what should it do?

Stanford University

Destructor solution

// in ArraylList.cpp
void ArraylList::~ArraylList() {
delete[] myElements;

}

Stanford University

i =) p— \/7)<\/\/L
Running out of space "\ ww‘w‘h% 22 \

What if the client wants to add more than 10 elements?

value | 3 8 9 7 5112 | 4 8 1 6
size 10 capacity 10

= list.add(75); // add an 11th element

value | 3 [8 |9|7(|5|12(4|8|1|6]| 75
size 11 capacity 20

= Answer: Resize the array to one twice as large.
» Make sure to free the memory used by the old array!

Stanford University

Resize solution

// in ArraylList.cpp
void ArraylList::checkResize() {
if (mySize == myCapacity) {

// create bi over
int* bigger = new int[2 * capacity]();

for (int i = @; 1 < myCapacity; i++) {
bigger[i] = myElements[i];

}
delete[] myElements;

myElements = bigger;
myCapacity *= 2;

Stanford University

Problem: size vs. capacity

What if the client accesses an element past the size?
list.get(7)

value | 3 8 9 7 5
size 5 capacity 10

= Currently the list allows this and returns 0.

» Is this good or bad? What (if anything) should we do about
it?

Stanford University

Private helpers

// in ClassName.h file
private:
returnType name(parameters);

a private member function can be called only by its own class

= your object can call the "helper" function, but clients cannot
call it

void ArraylList::checkIndex(int i, int min, int max) {
if (i < min || 1 > max) {
throw "Index out of range";

}

Stanford University

Extra topic:
Template classes

Something that Stanford
library containers have that
our ArraylList lacks.

Stanford University

Template function (14.1-2)

template<typename T>
returntype name(parameters)
statements;

}

Template: A function or class that accepts a type parameter(s).

Allows you to write a function that can accept many types of data.

Avoids redundancy when writing the same common operation on
different types of data.

Templates can appear on a single function, or on an entire class.
FYI. Java has a similar mechanism called generics.

Stanford University

Template func example

template<typename T>

T max(T a, T b) {
if (a < b) { return b; }
else { return a; }

» The template is instantiated each time you use it with a new type.
» The compiler actually generates a new version of the code each

time.
» The type you use must have an operator < to work in the above
code.
int 1 = max(17, 4); // T = 1int
double d = max(3.1, 4.6); // T = double
string s = max(string("hi"), // T = string

string("bye"));

Stanford University

Template class (14.1-2)

Template class: A class that accepts a type parameter(s).
= |nthe header and cpp files, mark each class/function as templated.
= Replace occurrences of the previous type int with T in the code.

// ClassName .h
template<typename T>
class ClassName {

}s

// ClassName.cpp
template<typename T>
type ClassName: :name(parameters) {

}

Stanford University

Recall: ArrayList.h

class ArraylList {
public:
ArraylList();
~ArraylList();
void add(int value);
void clear();
int get(int index) const;
void insert(int index, int value);
bool isEmpty() const;
void remove(int index);
void setgint index, int value) const;
int size() const;
string toString() const;

private:
int* elements;
int mysize;
int capacity;
void checkIndex(int index, int min, int max) const;
void checkResize();

}s

Stanford University

Template ArrayList.h

template <typename T> class Arraylist {
public:

ArraylList();

~ArraylList();

void add(T value);

void clear();

T get(int index) const;

void insert(int index, T value);

bool isEmpty() const;

void remove(int index);

void setgint index, T value) const;

int size() const;

string toString() const;

private:
T* elements;
int mysize;
int capacity;
void checkIndex(int index, int min, int max) const;
void checkResize();

}s

Stanford University

Template ArrayList.cpp

template <typename T>

ArrayList<T>::ArraylList() {
myCapacity 9;
myElements
mySize = 0;

new T[myCapacity];

template <typename T>

void ArraylList<T>::add(T value) {
checkResize();
myElements[mySize] = value;
mySize++;

template <typename T>

T ArraylList<T>::get(int index) const {
checkIndex(index, @, mySize - 1);
return myElements[index];

Stanford University

Template .h and .cpp

Because of an odd quirk with C++ templates, the separation between .h
header and .cpp implementation must be reduced.

= Either write all the bodies in the .h file (suggested),
= Or #include the .cpp at the end of .h file to join them together.

// ClassName .h
#ifndef _classname_h
#define _classname_h

template<typename T>
class ClassName {

¥
#include "ClassName.cpp"
#endif // _classname_h

Stanford University

