

Programming Abstractions

CS106B

Cynthia Lee

Upcoming Topics

Graphs!

1. Basics

- What are they? How do we represent them?

2. Theorems

- What are some things we can prove about graphs?

3. Breadth-first search on a graph

- Spoiler: just a very, very small change to tree version

4. Dijkstra's shortest paths algorithm

- Spoiler: just a very, very small change to BFS

5. A* shortest paths algorithm

- Spoiler: just a very, very small change to Dijkstra's

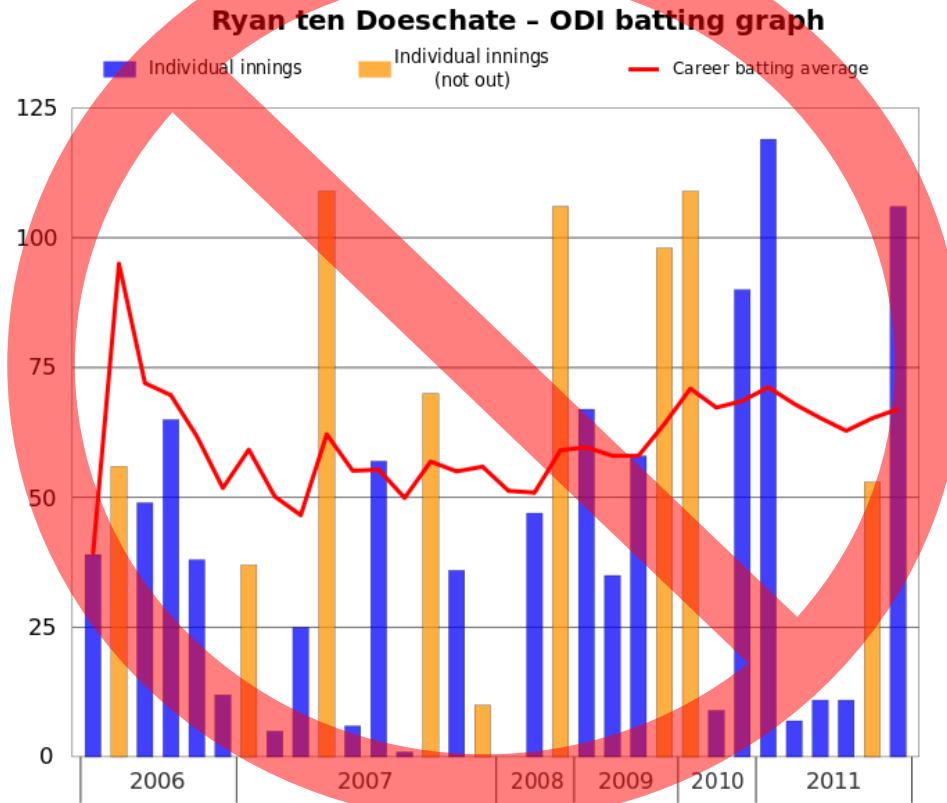
6. Minimum Spanning Tree

- Kruskal's algorithm

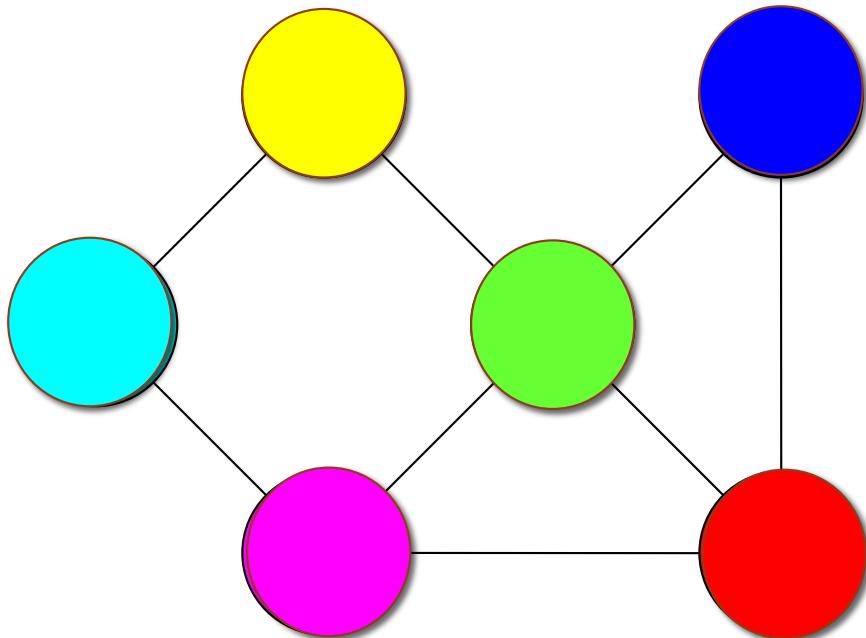
Graphs

What are graphs? What are they good for?

Graph



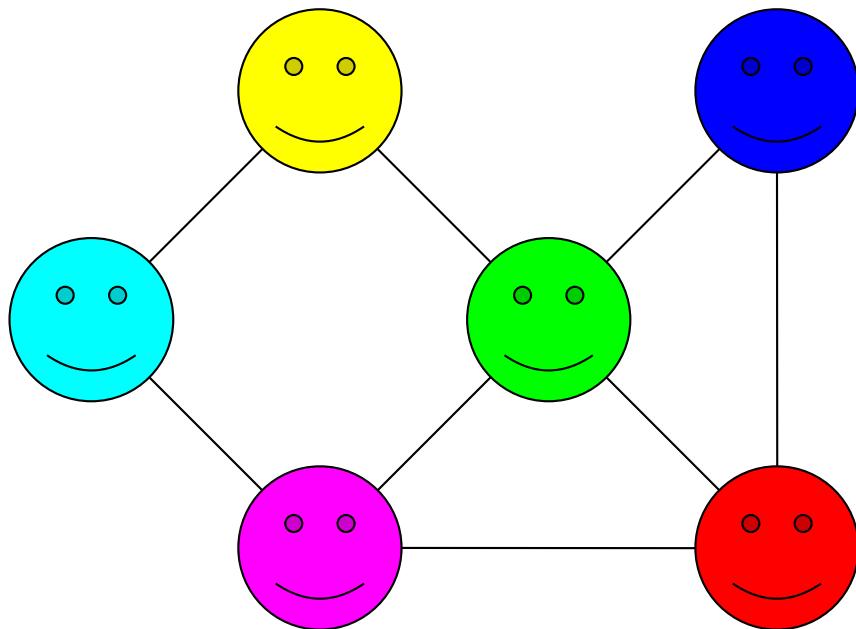
Graphs in Computer Science



A graph is a mathematical structure for representing relationships

- A set V of **vertices** (or *nodes*)
- A set E of **edges** (or *arcs*) connecting a pair of vertices

A Social Network



How You're Connected

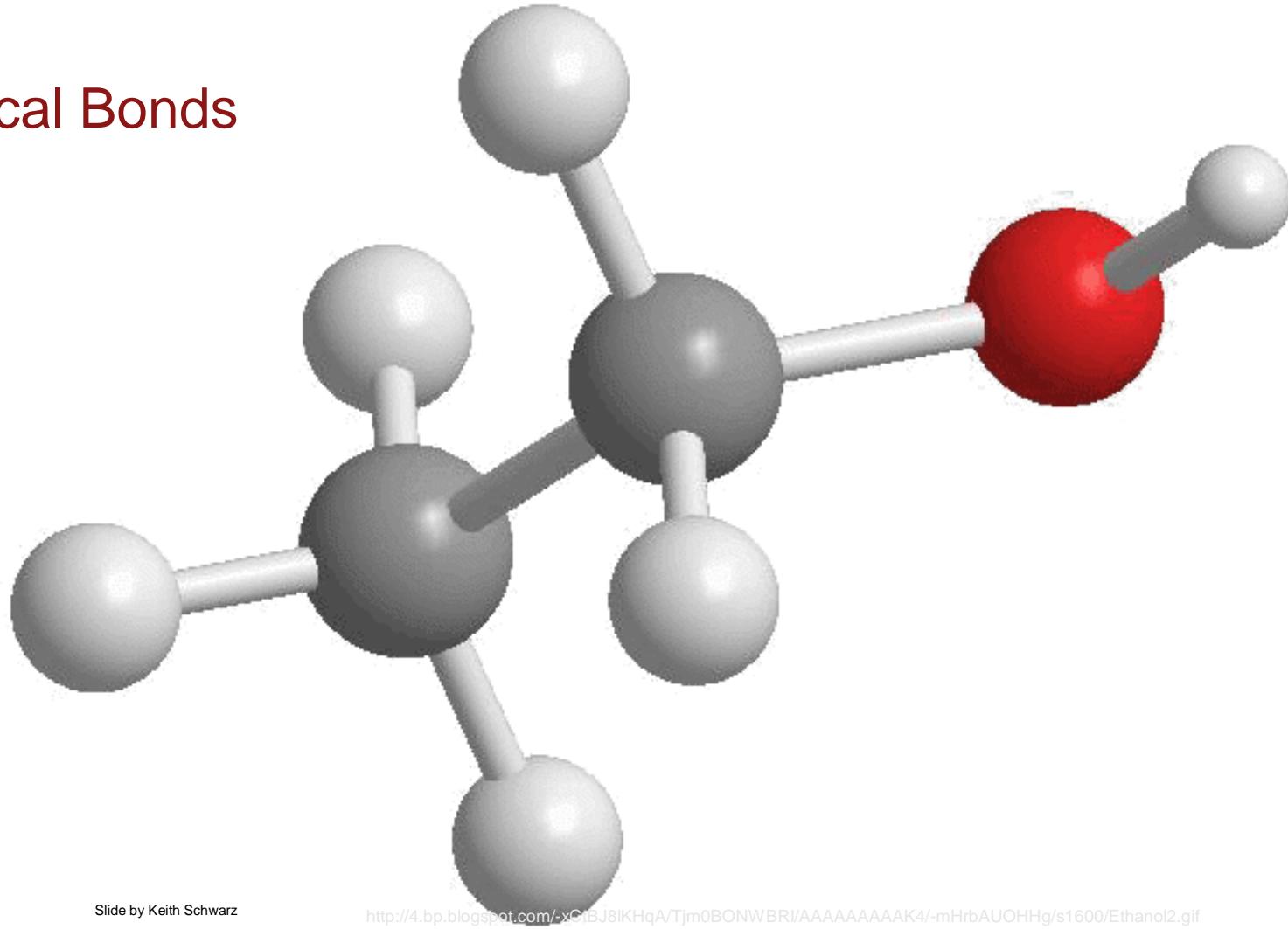
You

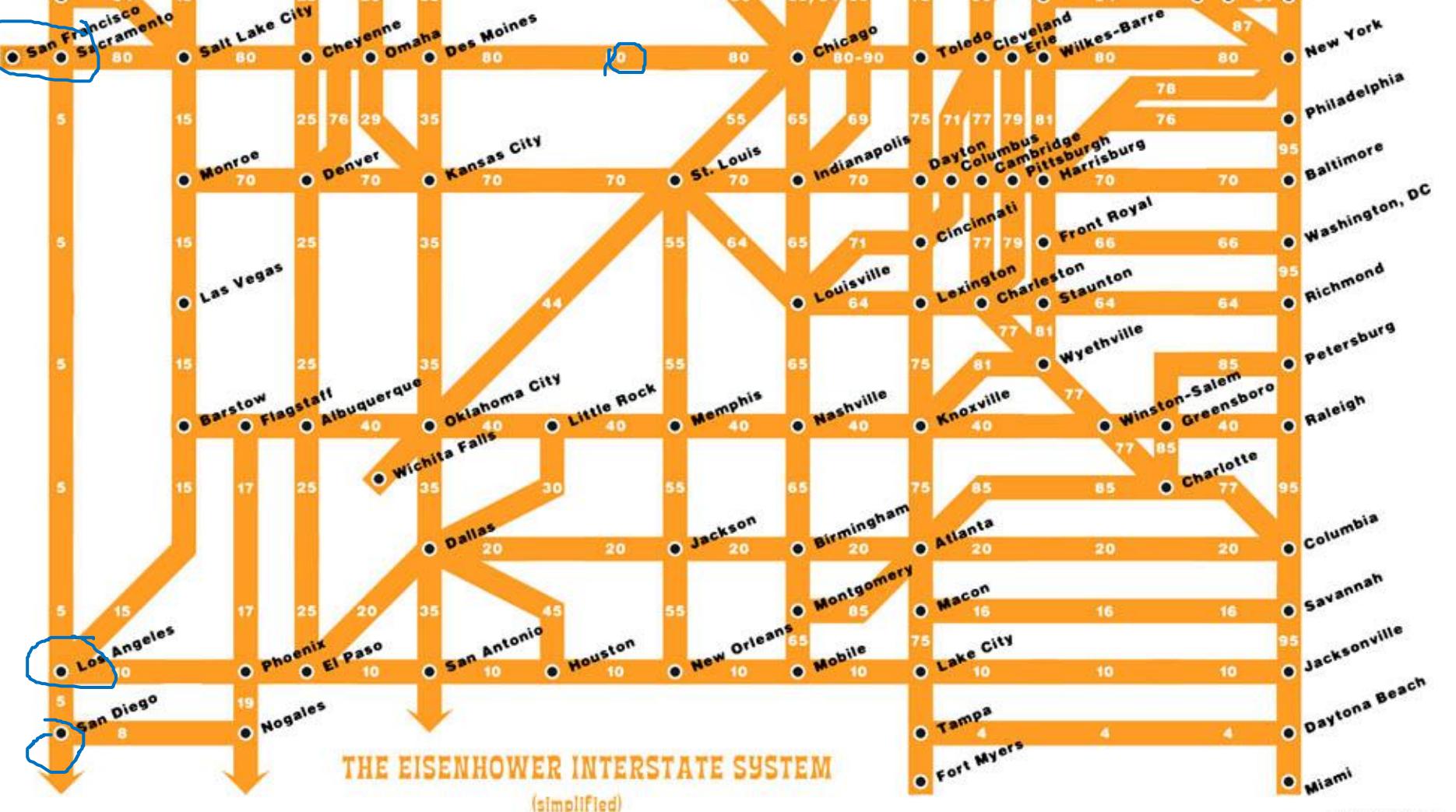
Estefania Ortiz

tristan walker

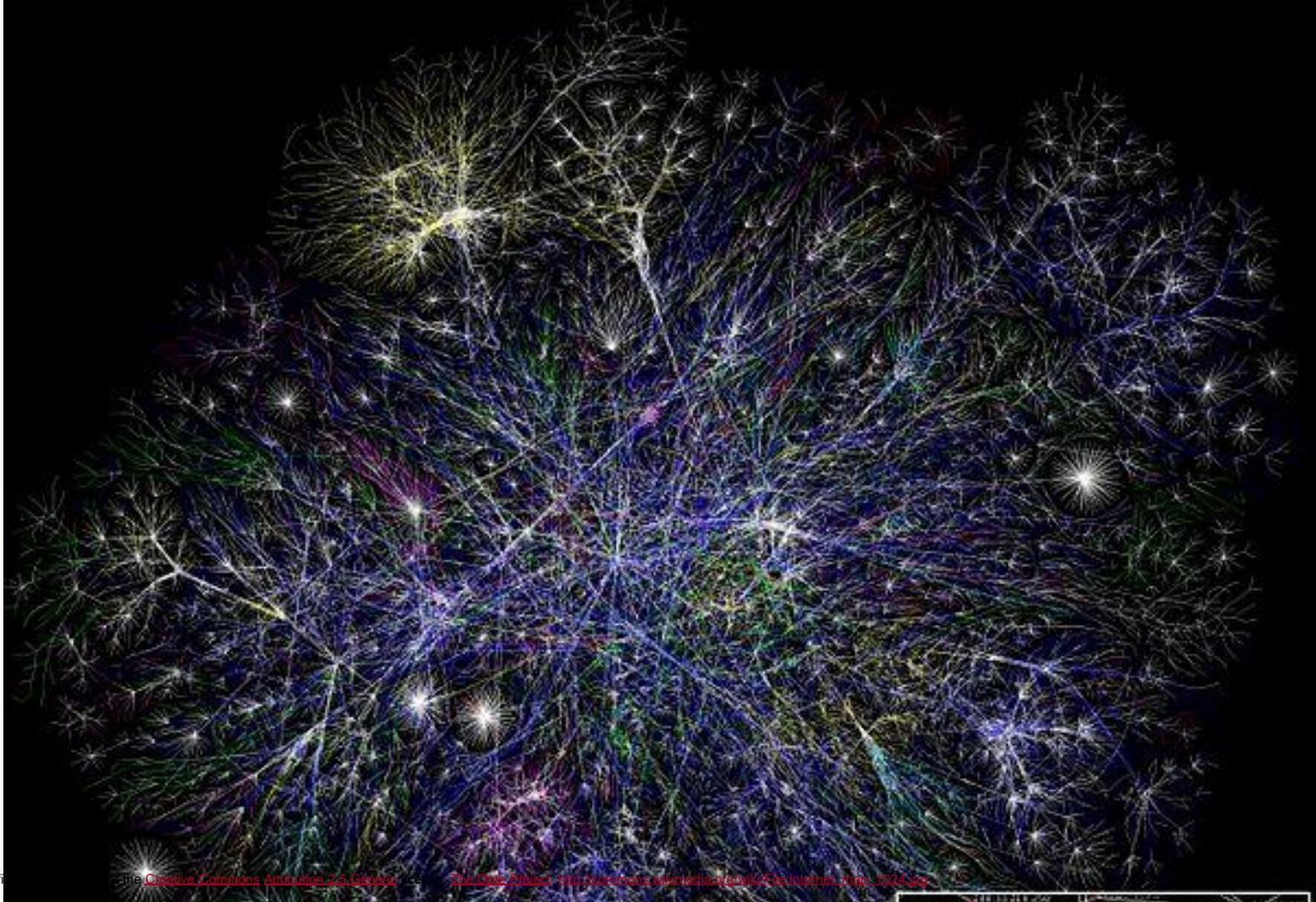
Ask Estefania for an introduction

Chemical Bonds



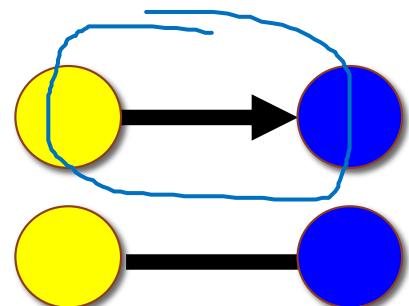


Internet



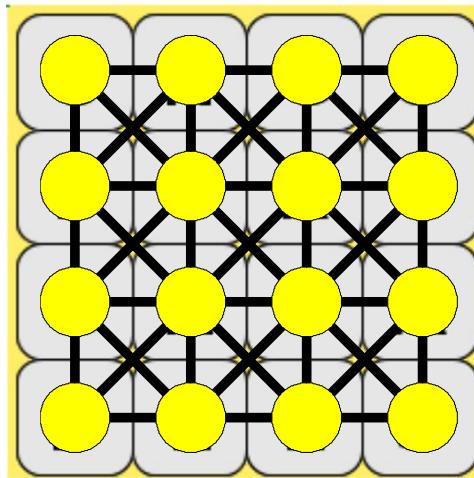
A graph is a mathematical structure for representing relationships

- A set V of **vertices** (or *nodes*)
 - › Often have an associated label
- A set E of **edges** (or *arcs*) connecting a pair of vertices
 - › Often have an associated cost or weight
- A graph may be **directed** (an edge from A to B only allow you to go from A to B, not B to A)
- or **undirected** (an edge between A and B allows travel in both directions)
- We talk about the number of vertices or edges as the *size of the set*, using the set theory notation for size: $|V|$ and $|E|$



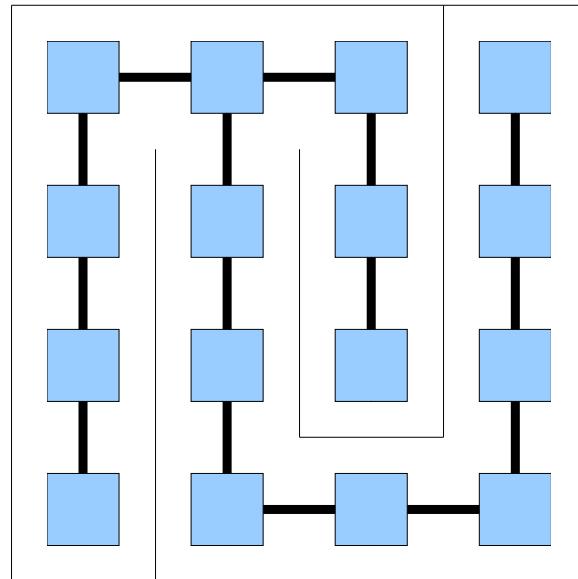
Boggle as a graph

Vertex = letter cube; Edge = connection to neighboring cube



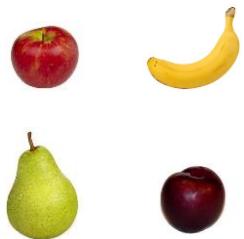
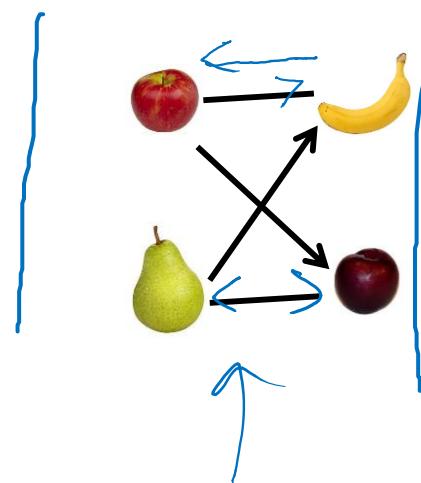
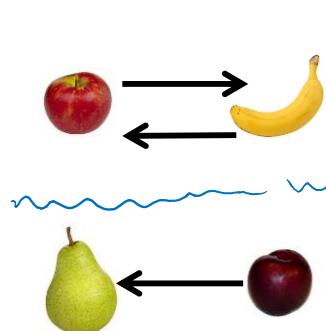
Maze as graph

If a maze is a graph, what is a vertex and what is an edge?



Graphs

How many of the following are valid graphs?



- A) 0
- B) 1
- C) 2
- D) 3

Graph Terminology

Graph terminology: Paths

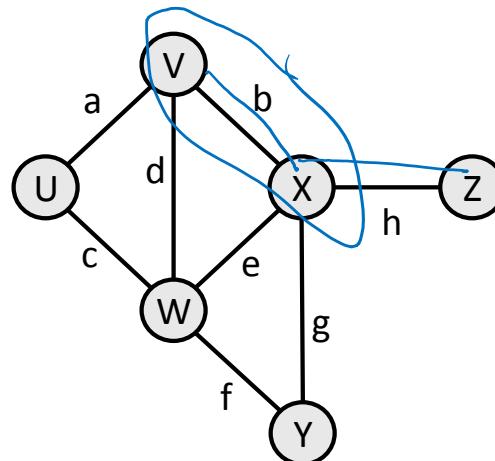
path: A path from vertex a to b is a sequence of edges that can be followed starting from a to reach b .

- can be represented as vertices visited, or edges taken
- Example: one path from V to Z : {b, h} or $\{V, X, Z\}$

path length: Number of vertices or edges contained in the path.

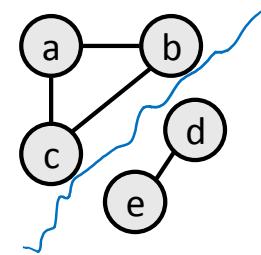
neighbor or adjacent: Two vertices connected directly by an edge.

- example: V and X



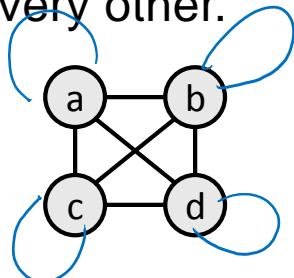
Graph terminology: Reachability, connectedness

reachable: Vertex a is *reachable* from b if a path exists from a to b .



connected: A graph is *connected* if every vertex is reachable from every other.

complete: If every vertex has a direct edge to every other.



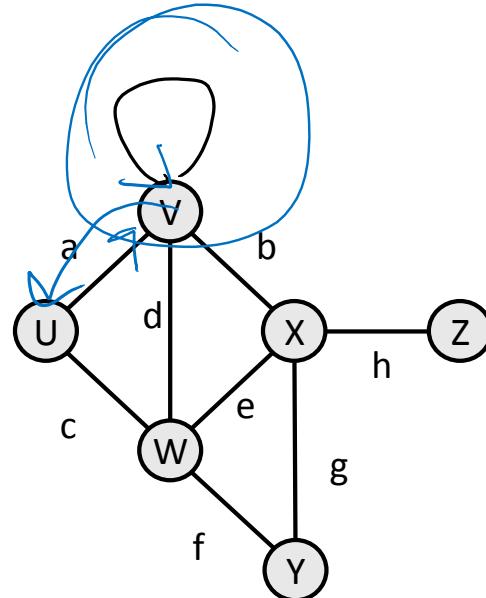
Graph terminology: Loops and cycles

cycle: A path that begins and ends at the same node.

- example: {V, X, Y, W, U, V}.
- example: {U, W, V, U}.
- **acyclic graph:** One that does not contain any cycles.

loop: An edge directly from a node to itself.

- Many graphs don't allow loops.

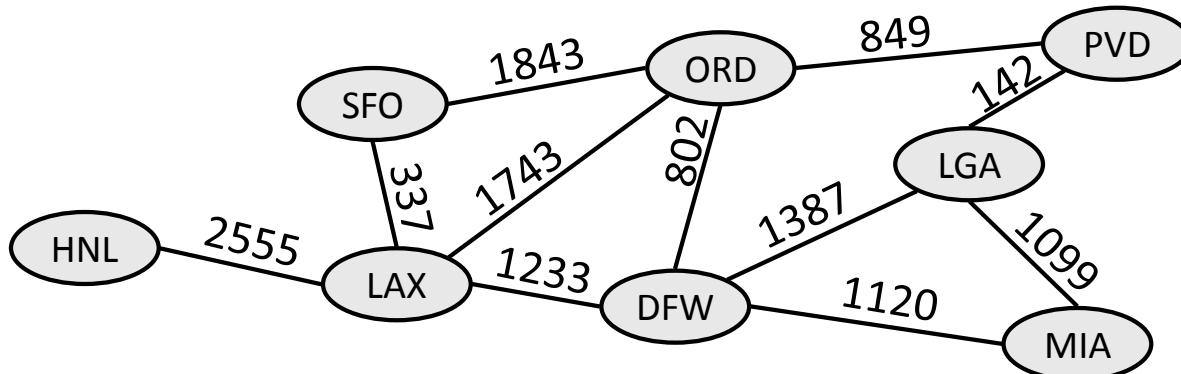


Graph terminology: Weighted graphs

weight: Cost associated with a given edge.

- Some graphs have weighted edges, and some are unweighted.
- Edges in an unweighted graph can be thought of as having equal weight (e.g. all 0, or all 1, etc.)
- Most graphs do not allow negative weights.

example: graph of airline flights, weighted by miles between cities:



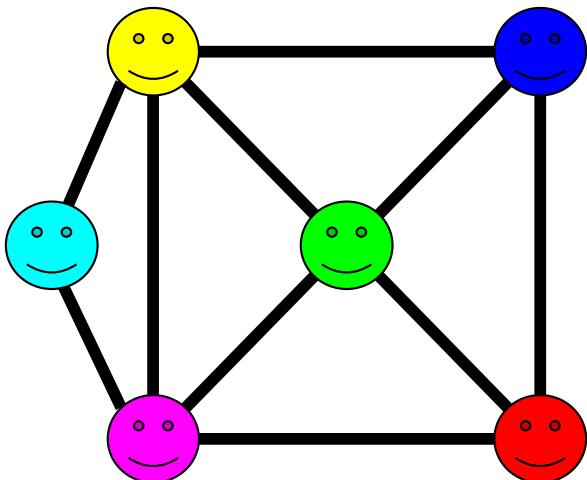
Representing Graphs

Ways we could implement a Graph class

Representing Graphs: Adjacency matrix

We can represent a graph as a
Grid<bool> (unweighted)
or
Grid<int> (weighted)

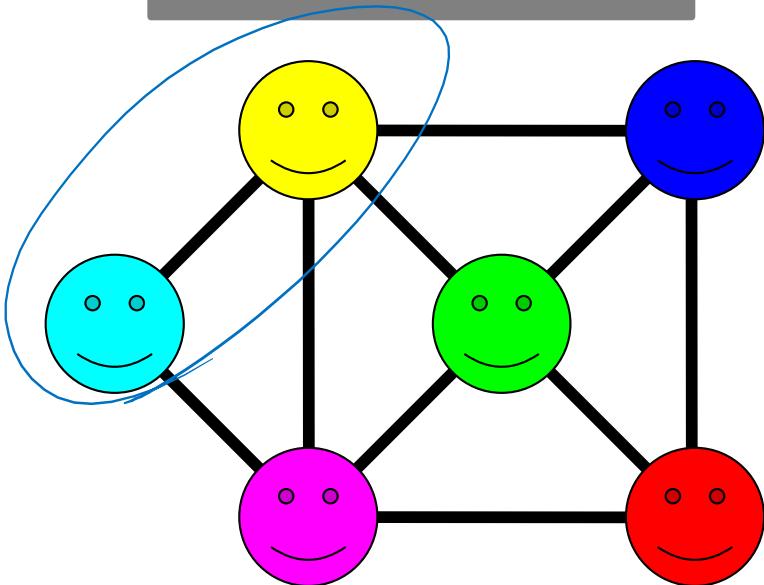
Facebook



	0	1	1	0	0	0
	1	0	1	1	1	0
	1	1	0	1	0	1
	0	1	1	0	1	1
	0	1	0	1	0	1
	0	0	1	1	1	0

Representing Graphs: Adjacency list

We can represent a graph as a map from nodes to the set of nodes each node is connected to.



`Map<Node*, Set<Node*>>`

Node	Connected To

Common ways of representing graphs

Adjacency list:

- Map<Node*, Set<Node*>>

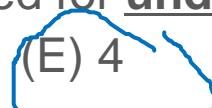
Adjacency matrix:

- Grid<bool> unweighted
- Grid<int> weighted

How many of the following are true?

- Adjacency list can be used for directed graphs
- Adjacency list can be used for undirected graphs
- Adjacency matrix can be used for directed graphs
- Adjacency matrix can be used for undirected graphs

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4



Graph Theory

Just a little taste of theorems about graphs

Graphs lend themselves to fun theorems and proofs of said theorems!

Any graph with 6 vertices contains either a triangle (3 vertices with all pairs having an edge) or an empty triangle (3 vertices no two pairs having an edge)

also called "clique"

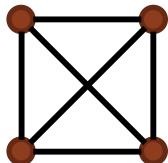
also called "independent set"

Eulerian graphs

Let G be an **undirected graph**

A graph is **Eulerian** if it can
drawn without lifting the pen
and without repeating edges

Is this graph Eulerian?

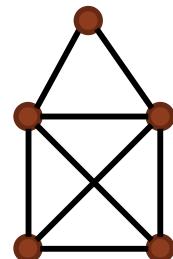
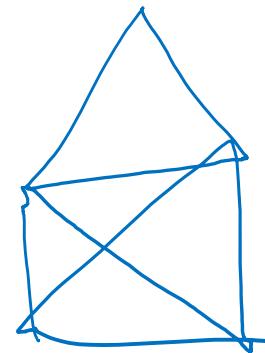


Eulerian graphs

Let G be an **undirected graph**

A graph is **Eulerian** if it can
drawn without lifting the pen
and without repeating edges

What about this graph?



Our second graph theorem

Definition: **Degree** of a vertex: number of edges adjacent to it

Euler's theorem: a connected graph is Eulerian iff the number of vertices with odd degrees is either 0 or 2 (eg all vertices or all but two have even degrees)

Does it work for

