
CS106B

Spring 2016 Cynthia Lee

Section 2 (Week 3) – SOLUTION
 Problem authors include Marty Stepp and Jerry Cain.

Problem 1 Solution: Twice
Set<int> twice(Vector<int>& v) {

 Map<int, int> counts;  

 for (int i : v) {

 counts[i]++;

 }

 Set<int> twice;

 for (int i : counts) {

 if (counts[i] == 2) {

 twice += i;

 }

 }

 return twice;

}

Bonus solution:
Set<int> twice(Vector<int>& v) {

 Set<int> once;

 Set<int> twice;

 Set<int> more;

 for (int i : v) {

 if (once.contains(i)) {

 once.remove(i);

 twice.add(i);

 } else if (twice.contains(i)) {

 twice.remove(i);

 more.add(i);

 } else if (!more.contains(i)) {

 once.add(i);

 }

 }

 return twice;

}

 2

Problem 2 Solution: Reverse Map
Map<string, int> reverseMap(Map<int, string>& map) {

 Map<string, int> rev;

 for (int i : map) {

 rev[map[i]] = i;

 }

 return rev;

}

Problem 3 Solution: Cannonballs
int cannonballs(int height) {

 if (height == 0) {

 return 0;

 } else {

 return height * height + cannonballs(height – 1);

 }

}

Problem 4 Solution: Reverse String
string reverseStr(string s) {

 if (s == "") {

 return "";

 } else {

 return reverseStr(s.substr(1)) + s[0];

 }

}

Problem 5 Solution: Twiddles

Key observation: finding twiddles is the same as fixing the first letter (one of up to five
possibilities) and appending some twiddle of the remaining letters. A 'c' at str’s position 0,
for instance, encodes the fact that 'a', 'b', 'c', 'd', or 'e' might contribute to a potential
twiddle at position 0. And for each of those five possibilities at position 0, there are five
contributions at position 1, and for each of those 25 possible possibilities between 0 and 1
combined, there are five independent contributions that might be made at position 2, and so
on, and so on.

static void listTwiddles(const string& str, const Lexicon& lex) {
 listTwiddles("", str, 0, lex);
}

 3

• The 0th argument is the empty string to clarify that no decisions made been made at the
outset.

• The 2nd argument is 0 to be clear that str[0] is the character that tells us how me might
extend the empty string into five different prefixes of length 1.

static void listTwiddles(const string& prefix, const string& str,
 int index, const Lexicon& lex) {

 if (!lex.containsPrefix(prefix)) return; // not strictly necessary
 if (index >= str.size()) {
 if (lex.contains(prefix))
 cout << prefix << endl;
 return;
 }

 for (char ch = str[index] - 2; ch <= str[index] + 2; ch++) {
 if (isalpha(ch)) {
 listTwiddles(prefix + ch, str, index + 1, lex);
 }
 }
}

Problem 6 Solution: Making Change

The exported countWaysToMakeChange takes two parameters, but my implementation
wraps around a single call to a three-argument version. The third argument dictates the
lowest index within denominations the call is allowed to use while constructing the
various ways to make change. Tacking on the 0 in the wrapped call makes it clear that all
indices—from index 0 forward—are fair game.

static int countWaysToMakeChange(const Vector<int>& denominations,
 int amount) {

 return countWaysToMakeChange(denominations, amount, 0);
}

The three-argument version partitions the total number of ways to make change into two
categories—those that require one or more contributions of denoms.get(start), and those
that forbid any contributions of denoms.get(start). (Note that we’re constrained to use
get instead of operator[], because operator[] currently can’t be levied against a const
Vector.)

static int countWaysToMakeChange(const Vector<int>& denoms,
 int amount, int start) {
 if (amount == 0) return 1; // there’s 1 way to not give any change
 if (amount < 0) return 0; // it’s impossible to make negative change
 if (start >= denoms.size()) return 0; // no permitted denominations
 return
 countWaysToMakeChange(denoms, amount - denoms.get(start), start) +
 countWaysToMakeChange(denoms, amount, start + 1);
}

