CS106B Supplement to Section 4 (Week 5) - Solutions

0. Pre-section

part 1:
vl : 70
v2 : 25

pl : points to vl
p2 : points to vl

part 2:

list->next->next->next->next = list->next->next; // 40->30

/ 20->40

// 30->10

// list->20

// make 10 the end

list->next->next = list->next->next->next;
list->next->next->next->next =1

list = list->next;
list->next->next->next->next =

1. LinkedNodes (1)

b) 1ist_.|1|_|_.|3|_|_.|2|/|

c) 1ist—>|4|—|—>|3|/|
d) 1ist_.|1|_|_.|2|/|

2. LinkedNodes (2)

list->next->next = new ListNode(3, NULL);

a)

b)
list = new ListNode(3, list);

c)
temp->next->next = list->next;
list->next = temp;

d)
list->next->next = temp->next;
temp->next = list->next;
list->next = temp;

e)
ListNode* list2 = list;
list = list->next;
list2->next = list2->next->next;
list->next = NULL;

)
ListNode* temﬁ =
temp->next = list->next;
list->next->next = list;
list->next->next->next = NULL;
list = temp;

g)

list->next->next->next = list;

list = list->next->next;

ListNode* 1list2 = list->next->next;

list->next->next = NULL;

list->next->next;

// 2 ->3

// 3 ->

~N~
~N~

NN
NN

NN
NN

NN
NN

1 and 1list

YN
1

\%4

N

R WN
1
v
wWN b

list2 -> 1
list -> 2
1->3

2/

temp -> 3
3->4

4 -> 5
5/

list -> 3

3 ->5
list -> 3
list2 -> 4
5/

-> 3

Page 1

CS106B Supplement to Section 4 (Week 5) - Solutions

CS106B Supplement to Section 4 (Week 5) - Solutions

3. min

int LinkedList::min() const {

if (m_front == NULL) {
throw "list is empty";

} else {
int min = m_front->data;
ListNode* current = m_front->next;
while (current != NULL) {

if (current->data < min) {
min = current->data;

current = current->next;

return min;

4, isSorted

bool LinkedList::isSorted() const {
if (m_front != NULL)
ListNode* current = m_front;
while (current->next T= NULL) {
if (current->data > current->next->data) {
return false;

current = current->next;

return true;

5. countDuplicates

int LinkedList::countDuplicates() const {
int count = 0;
if (m_front != NULL) {
ListNode* current = m_front;
while (current->next T= NULL) {
if (current->data == current->next->data) {
count++;

current = current->next;

return count;

6. stutter

void LinkedList::stutter() {
ListNode* current = m_front;

while (current != NULL) {.
current->next = new ListNode(current->data, current->next);

current = current->next->next;

Page 2

CS106B Supplement to Section 4 (Week 5) - Solutions

CS106B Supplement to Section 4 (Week 5) - Solutions

7. deleteBack

int LinkedList::deleteBack() {
if (m_front == NULL)
throw "empty list";

int result = 9;
if (m_front->next == NULL) {
result = m_front->data;
delete m_front;
m_front = NULL;
} else {
ListNode* current = m_front;
while (current->next->next != NULL) {
current = current->next;

result = current->next->data;
delete current->next;
current->next = NULL;

return result;

8. split

void LinkedList::split(
if (m_front != NULL
ListNode* current = m_front;
while (current->next T= NULL)
if (current->next->data < 9) {
ListNode* temp = current->next;
current->next = current->next->next;
temp->next = m_front;
m_front = temp;
} else {
current = current->next;

9. removeAll

void LinkedList::removeAll(int value) {
while (m_front != NULL && m_front->data == value) {
ListNode* trash = m_front;
m_front = m_front->next;
delete trash;

if (m_front != NULL) {
ListNode* current = m_front;
while (current->next T= NULL)
if (current->next->data == value) {
ListNode* trash = current->next;
current->next = current->next->next;
delete trash;
} else {
current = current->next;

Page 3

CS106B Supplement to Section 4 (Week 5) - Solutions

CS106B Supplement to Section 4 (Week 5) - Solutions

10. doublelist

void LinkedList::doublelList() {
if (m_front != NULL)

ListNode* half2 = new ListNode(m_front->data);

ListNode* back = half2;

ListNode* current = m_front;

while (current->next T= NULL) {
current = current->next;
back->next = new ListNode(current->data);
back = back->next;

current->next = half2;

11. rotate

void LinkedList::rotate(g {
if (m_front != NULL && m_front->next != NULL) {
ListNode* temp = m_front;
m_front = m_front->next;
ListNode* current = m_front;
while (current->next T= NULL) {
current = current->next;

current->next = temp;
temp->next = NULL;

12. reverse

void LinkedList::reverse() {

ListNode* current = m_front;

ListNode* previous = NULL;

while (current != NULL) {
ListNode* nextNode = current->next;
current->next = previous;
previous = current;
current = nextNode;

m_front = previous;

Page 4

CS106B Supplement to Section 4 (Week 5) - Solutions

	CS 106B Section 5 (Week 6) Solutions

