
CS 106B Sec
on 5 (Week 6) Solu
ons

0. Pre-sec
on

part 1:

v1 : 70
v2 : 25
p1 : points to v1
p2 : points to v1

part 2:

list->next->next->next->next = list->next->next; // 40->30
list->next->next = list->next->next->next; // 20->40
list->next->next->next->next = list; // 30->10
list = list->next; // list->20
list->next->next->next->next = null; // make 10 the end

1. LinkedNodes (1)

2. LinkedNodes (2)

a)
list->next->next = new ListNode(3, NULL); // 2 -> 3

b)
list = new ListNode(3, list); // 3 -> 1 and list -> 3

c)
temp->next->next = list->next; // 4 -> 2
list->next = temp; // 1 -> 3

d)
list->next->next = temp->next; // 2 -> 4
temp->next = list->next; // 3 -> 2
list->next = temp; // 1 -> 3

e)
ListNode* list2 = list; // list2 -> 1
list = list->next; // list -> 2
list2->next = list2->next->next; // 1 -> 3
list->next = NULL; // 2 /

f)
ListNode* temp = list->next->next; // temp -> 3
temp->next = list->next; // 3 -> 4
list->next->next = list; // 4 -> 5
list->next->next->next = NULL; // 5 /
list = temp; // list -> 3

g)
list->next->next->next = list; // 3 -> 5
list = list->next->next; // list -> 3
ListNode* list2 = list->next->next; // list2 -> 4
list->next->next = NULL; // 5 /

Page 1

CS106B Supplement to Section 4 (Week 5) - Solutions

CS 106B Sec
on 5 (Week 6) Solu
ons

3. min

int LinkedList::min() const {
 if (m_front == NULL) {
 throw "list is empty";
 } else {
 int min = m_front->data;
 ListNode* current = m_front->next;
 while (current != NULL) {
 if (current->data < min) {
 min = current->data;
 }
 current = current->next;
 }
 return min;
 }
}

4. isSorted

bool LinkedList::isSorted() const {
 if (m_front != NULL) {
 ListNode* current = m_front;
 while (current->next != NULL) {
 if (current->data > current->next->data) {
 return false;
 }
 current = current->next;
 }
 }
 return true;
}

5. countDuplicates

int LinkedList::countDuplicates() const {
 int count = 0;
 if (m_front != NULL) {
 ListNode* current = m_front;
 while (current->next != NULL) {
 if (current->data == current->next->data) {
 count++;
 }
 current = current->next;
 }
 }
 return count;
}

6. stu%er

void LinkedList::stutter() {
 ListNode* current = m_front;
 while (current != NULL) {
 current->next = new ListNode(current->data, current->next);
 current = current->next->next;
 }
}

Page 2

CS106B Supplement to Section 4 (Week 5) - Solutions

CS 106B Sec
on 5 (Week 6) Solu
ons

7. deleteBack

int LinkedList::deleteBack() {
 if (m_front == NULL) {
 throw "empty list";
 }
 int result = 0;
 if (m_front->next == NULL) {
 result = m_front->data;
 delete m_front;
 m_front = NULL;
 } else {
 ListNode* current = m_front;
 while (current->next->next != NULL) {
 current = current->next;
 }
 result = current->next->data;
 delete current->next;
 current->next = NULL;
 }
 return result;
}

8. split

void LinkedList::split() {
 if (m_front != NULL) {
 ListNode* current = m_front;
 while (current->next != NULL) {
 if (current->next->data < 0) {
 ListNode* temp = current->next;
 current->next = current->next->next;
 temp->next = m_front;
 m_front = temp;
 } else {
 current = current->next;
 }
 }
 }
}

9. removeAll

void LinkedList::removeAll(int value) {
 while (m_front != NULL && m_front->data == value) {
 ListNode* trash = m_front;
 m_front = m_front->next;
 delete trash;
 }
 if (m_front != NULL) {
 ListNode* current = m_front;
 while (current->next != NULL) {
 if (current->next->data == value) {
 ListNode* trash = current->next;
 current->next = current->next->next;
 delete trash;
 } else {
 current = current->next;
 }
 }
 }
}

Page 3

CS106B Supplement to Section 4 (Week 5) - Solutions

CS 106B Sec
on 5 (Week 6) Solu
ons

10. doubleList

void LinkedList::doubleList() {
 if (m_front != NULL) {
 ListNode* half2 = new ListNode(m_front->data);
 ListNode* back = half2;
 ListNode* current = m_front;
 while (current->next != NULL) {
 current = current->next;
 back->next = new ListNode(current->data);
 back = back->next;
 }
 current->next = half2;
 }
}

11. rotate

void LinkedList::rotate() {
 if (m_front != NULL && m_front->next != NULL) {
 ListNode* temp = m_front;
 m_front = m_front->next;
 ListNode* current = m_front;
 while (current->next != NULL) {
 current = current->next;
 }
 current->next = temp;
 temp->next = NULL;
 }
}

12. reverse

void LinkedList::reverse() {
 ListNode* current = m_front;
 ListNode* previous = NULL;
 while (current != NULL) {
 ListNode* nextNode = current->next;
 current->next = previous;
 previous = current;
 current = nextNode;
 }
 m_front = previous;
}

Page 4

CS106B Supplement to Section 4 (Week 5) - Solutions

	CS 106B Section 5 (Week 6) Solutions

