CS106B
Spring 2016 Cynthia Lee

Section 5 (Week 6) Handout

Section problems by Marty Stepp, with edits by Cynthia Lee

Binary Tree Reference:
struct TreeNode {
int data;
TreeNode* left;
TreeNode* right;

}i

class BinaryTree {
public:
member functions;
private:
TreeNode* root; // NULL if empty

}i

Binary Tree Member Functions

Each of the following problems (except #7) asks you to add a member function to the
BinaryTree class from lecture. In all cases, if your function deletes a node from the tree,
free the associated memory for the node.

1. height. Write a member function height that returns the height of a tree. The height is
defined to be the number of edges along the longest path from the root to a leaf. For
example, an empty tree has height 0, a tree of one node has height 1, a node with one
or two leaves as children is a tree of height 2, etc.

2. isBST. Write a member function isBST that returns whether or not a binary tree is
arranged in valid binary search tree (BST) order. Remember that a BST is a tree in which
every node n's left subtree is a BST that contains only values less than n's data, and its
right subtree is a BST that contains only values greater than n's data.

BST not a BST



limitPathSum. Write a member function 1imitPathsSum that accepts an integer value
representing a maximum, and removes tree nodes to guarantee that the sum of values
on any path from the root to a node does not exceed that maximum. For example, if
variable t refers to the tree below at left, the call of t.limitPathSum(50);

will require removing node 12 because the sum from the root down to that node is
more than 50 (29 + 17 + -7 + 12 = 51). Similarly, we have to remove node 37 because
its sum is (29 + 17 + 37 = 83). When you remove a node, you remove anything under
it, so removing 37 also removes 16. We also remove the node with 14 because its sum
is (29 + 15 + 14 = 58). If the data stored at the root is greater than the given maximum,
remove all nodes, leaving an empty (NULL) tree. Free memory as needed, but only
remove nodes when necessary.

before call after call
29 29
/ \ / \
17 15 17 15
/ N\ / N\ / /
-7 37 4 14 -7 4
/ N\ \ / N\ /
11 12 16 -9 19 11

isBalanced. Write a member function isBalanced that returns whether or not a binary
tree is balanced. A tree is balanced if its left and right subtrees are also balanced trees
whose heights differ by at most 1. The empty (NULL) tree is balanced by definition. You
may call solutions to other section exercises to help you.

balanced balanced not balanced not balanced
8 4 8 4
/ \ / \ / / \
4 9 3 9 4 3 9
/ \ / / \ / \
2 7 1 2 7 1 5
/
2

. completeToLevel. Write a member function completeToLevel that accepts an integer
k as a parameter and adds nodes with value -1 to a tree so that the first k levels are
complete. A level is complete if every possible node at that level is non-NULL. We will
use the convention that the overall root is at level 1, its children are at level 2, and so
on. Preserve any existing nodes in the tree. For example, if a variable called t refers to
the tree below and you make the call of t.completeToLevel(3); you should fill in
nodes to ensure that the first 3 levels are complete. Notice that level 4 of this tree is not
complete. Keep in mind that you might need to fill in several different levels. You
should throw an integer exception if passed a value for k that is less than 1.

before call after call
17 17
/ N\ /
83 6 83
/ \ / N\
19 87 19 1 87
\ / \
48 75 48




6. countLeftNodes. Write a member function countLeftNodes that returns the number of
left children in the tree. A left child is a node that appears as the root of the left-hand
subtree of another node. For example, the tree in Problem 7 (a) below has 3 left

children (the nodes storing the values 5, 1, and 4).

7. Traversals. Write the elements of each tree below in the order they would be seen by a

pre-order, in-order, and post-order traversal.

a)

b)

-2

94

28

c)



