CS106B
Spring 2016 Cynthia Lee

Section 7 (Week 8) - SOLUTION

Problem and solution authors include Marty Stepp

1. Graph Properties.
Graph 1: directed, unweighted, not connected, cyclic
degrees: A=(in © out 2), B=(in 2 out 1), C=(in 1 out 1), D=(in 2 out 1),
E=(in 2 out 2), F=(in 2 out 1), G=(in 2 out 1), H=(in 2 out 1),
I=(in © out 2)
Graph 2: undirected, unweighted, connected, acyclic
degrees: A=1, B=3, C=1, D=2, E=2, F=1
Graph 3: directed, unweighted, not connected, cyclic
degrees: A=(in 1 out 2), B=(in 3 out 1), C=(in © out 1),
D=(in 2 out 1), E=(in 1 out 2)
Graph 4: undirected, weighted, not connected, cyclic
degrees: A=2, B=2, C=2, D=1, E=1
Graph 5: undirected, unweighted, connected, cyclic
degrees: A=3, B=3, C=3, D=3
Graph 6: directed, weighted, not connected (weakly connected), cyclic
degrees: A=(in 2 out 2), B=(in 2 out 3), C=(in 2 out 3), D=(in 2 out 9),
E=(in 2 out 2), F=(in 3 out 2), G=(in 1 out 2)

2. DFS

Graph 1 Graph 6

A to B: {A, B} A to B: {A, C, B}

A to C: {A, B, E, F, C} A to C: {A, C}

A to D: {A, B, E, D} A to D: {A, C, D}

A to E: {A, B, E} A to E: {A, C, B, F, E}
A to F: {A, B, E, F} A to F: {A, C, B, F}
A to G: {A, B, E, D, G} A to G: {A, C, G}

A to H: {A, B, E, D, G, H}

A to I: no path

3. BFS (shorter paths underlined)

Graph 1 Graph 6

A to B: {A, B} A to B: {A, C, B}

A to C: {A, B, E, F, C} A to C: {A, C}

A to D: {A, D} A to D: {A, C, D}

A to E: {A, B, E} A to E: {A, E}

A to F: {A, B, E, F} A to F: {A, E, F}

A to G: {A, D, G} A to G: {A, C, G}

A to H: {A, D, G, H}

A to I: no path



to
to
to
to
to
to

>>>>>> A

AOTMMmMON®

minimum weight paths (lower weight paths underlined)

{A, E, F, B}, weight=5

{A, E, F, B, C}, weight=6

{A, E, F, B, C, G, D}, weight=12
{A, E}, weight=1

{A, E, F}, weight=3

{A, E, F, B, C, G}, weight=11

5. kthLevelFriends

Set<Vertex*> kthLevelFriends(BasicGraph& graph, Vertex* v, int k) {

}

Set<Vertex*> result;

Set<Vertex*> known;

kthLevelHelper(graph, v, known, result, k);
return result;

void kthLevelHelper(BasiGraph& graph, Vertex* v, Set<Vertex*>& known,

Set<Vertex*>& result, int k) {

if (k == @) {
result.add(v);
} else {

known += v;

for (Vertex* friend : graph.getNeighbors(v)) {
if (!known.contains(friend)) {

kthLevelHelper(graph, friend, known, result, k - 1);



6. isReachable

DFS solution:

bool isReachable(BasicGraph& graph, Vertex* vi1, Vertex* v2) {
Set<Vertex*> visited;
return isReachable(graph, vi1, v2, visited);

bool isReachable(BasicGraph& graph, Vertex* v1, Vertex* v2,
Set<Vertex*> visited) {
if (vl == v2) {
return true;

visited += vi;
foreach (Edge* edge in graph.getEdgeSet(vl)) {
Vertex* neighbor = edge->finish;
if (!visited.contains(neighbor)
&& isReachable(graph, neighbor, v2, visited)) {
return true;

return false;

BFS solution:
bool isReachable(BasicGraph& graph, Vertex* vi1, Vertex* v2) {
Queue<Vertex*> toExplore;
Set<Vertex*> visited;
visited += vi;
toExplore.enqueue(vl);
while (!toExplore.isEmpty()) {
Vertex* next = toExplore.dequeue();
if (next == v2) {
return true;

}
for (Vertex* neighbor : graph.getNeighbors(next)) {
if (!visited.contains(neighbor)) {
visited += neighbor;
toExplore.enqueue(neighbor)

}

return false;

7. isConnected

bool isConnected(BasicGraph& graph) {
for (Vertex* vl : graph.getVertexSet()) {
for (Vertex* v2 : graph.getVertexSet()) {
if (vl != v2 && !isReachable(graph, vi1, v2)) {
) return false;

}

return true;



8. findMinimumVertexCover

Set<Vertex*> findMinimumVertexCover(BasicGraph& graph) {

}

Set<Vertex*> best = graph.getVertexSet(); // worst case solution
Set<Vertex*> chosen;
Set<Edge*> coveredEdges;
Vector<Vertex*> allVertices;
for (Vertex* v : graph.getVertexSet()) {
allVertices += v;

coverHelper(graph, chosen, coveredEdges, allVertices, 0, best);
return best;

void coverHelper(BasicGraph& graph, Set<Vertex*>& chosen,

Set<Edge*>& coveredEdges, Vector<Vertex*>& allVertices,
int index, Set<Vertex*>& best) {
if (chosen.size() >= best.size()) {
// base case: current cover too large
return;
} else if (coveredEdges.size() == graph.getEdgeSet().size()) {
// base case: found a new smaller cover that uses all edges;
// remember it
best = chosen;
return;
} else if (index == graph.getVertexSet().size()) {
// base case: exhausted all vertices to explore
return;
} else {
// recursive case: explore whether or not to include the current vertex
// (the one at index) in the current vertex cover

// choose not to include this vertex; explore
coverHelper(graph, chosen, coveredEdges, allVertices, index + 1, best);

// choose to include this vertex; explore
chosen += allVertices[index];

// remember which new edges are added here (so that we can un-choose later)

Set<Edge*> newEdges;
for (Edge* e in graph.getEdgeSet(allVertices[index])) {
if (!coveredEdges.contains(e)) {
// must add this edge and its inverse (A -> B and B -> A)
Edge* inverse = graph.getEdge(e->finish, e->start);
newkdges += e, inverse;
coveredEdges += e, inverse;

}

coverHelper(graph, chosen, coveredEdges, allVertices, index + 1, best);

// unchoose
chosen -= allVertices[index];
coveredEdges -= newEdges;



