
CS106B

Spring 2016 Cynthia Lee

Section 7 (Week 8) – SOLUTION
 Problem and solution authors include Marty Stepp

1. Graph Properties.
Graph 1: directed, unweighted, not connected, cyclic
 degrees: A=(in 0 out 2), B=(in 2 out 1), C=(in 1 out 1), D=(in 2 out 1),
 E=(in 2 out 2), F=(in 2 out 1), G=(in 2 out 1), H=(in 2 out 1),
 I=(in 0 out 2)
Graph 2: undirected, unweighted, connected, acyclic
 degrees: A=1, B=3, C=1, D=2, E=2, F=1
Graph 3: directed, unweighted, not connected, cyclic
 degrees: A=(in 1 out 2), B=(in 3 out 1), C=(in 0 out 1),
 D=(in 2 out 1), E=(in 1 out 2)
Graph 4: undirected, weighted, not connected, cyclic
 degrees: A=2, B=2, C=2, D=1, E=1
Graph 5: undirected, unweighted, connected, cyclic
 degrees: A=3, B=3, C=3, D=3
Graph 6: directed, weighted, not connected (weakly connected), cyclic
 degrees: A=(in 2 out 2), B=(in 2 out 3), C=(in 2 out 3), D=(in 2 out 0),
 E=(in 2 out 2), F=(in 3 out 2), G=(in 1 out 2)

2. DFS
Graph 1 Graph 6
A to B: {A, B} A to B: {A, C, B}
A to C: {A, B, E, F, C} A to C: {A, C}
A to D: {A, B, E, D} A to D: {A, C, D}
A to E: {A, B, E} A to E: {A, C, B, F, E}
A to F: {A, B, E, F} A to F: {A, C, B, F}
A to G: {A, B, E, D, G} A to G: {A, C, G}
A to H: {A, B, E, D, G, H}
A to I: no path

3. BFS (shorter paths underlined)
Graph 1 Graph 6
A to B: {A, B} A to B: {A, C, B}
A to C: {A, B, E, F, C} A to C: {A, C}
A to D: {A, D} A to D: {A, C, D}
A to E: {A, B, E} A to E: {A, E}
A to F: {A, B, E, F} A to F: {A, E, F}
A to G: {A, D, G} A to G: {A, C, G}
A to H: {A, D, G, H}
A to I: no path

 2

4. minimum weight paths (lower weight paths underlined)
A to B: {A, E, F, B}, weight=5
A to C: {A, E, F, B, C}, weight=6
A to D: {A, E, F, B, C, G, D}, weight=12
A to E: {A, E}, weight=1
A to F: {A, E, F}, weight=3
A to G: {A, E, F, B, C, G}, weight=11

5. kthLevelFriends

Set<Vertex*> kthLevelFriends(BasicGraph& graph, Vertex* v, int k) {
 Set<Vertex*> result;
 Set<Vertex*> known;
 kthLevelHelper(graph, v, known, result, k);
 return result;
}

void kthLevelHelper(BasiGraph& graph, Vertex* v, Set<Vertex*>& known,
 Set<Vertex*>& result, int k) {
 if (k == 0) {
 result.add(v);
 } else {
 known += v;
 for (Vertex* friend : graph.getNeighbors(v)) {
 if (!known.contains(friend)) {
 kthLevelHelper(graph, friend, known, result, k -­‐ 1);
 }
 }
 }
}

 3

6. isReachable

DFS solution:
bool isReachable(BasicGraph& graph, Vertex* v1, Vertex* v2) {
 Set<Vertex*> visited;
 return isReachable(graph, v1, v2, visited);
}

bool isReachable(BasicGraph& graph, Vertex* v1, Vertex* v2,
 Set<Vertex*> visited) {
 if (v1 == v2) {
 return true;
 }
 visited += v1;
 foreach (Edge* edge in graph.getEdgeSet(v1)) {
 Vertex* neighbor = edge-­‐>finish;
 if (!visited.contains(neighbor)
 && isReachable(graph, neighbor, v2, visited)) {
 return true;
 }
 }
 return false;
}

BFS solution:
bool isReachable(BasicGraph& graph, Vertex* v1, Vertex* v2) {
 Queue<Vertex*> toExplore;
 Set<Vertex*> visited;
 visited += v1;
 toExplore.enqueue(v1);
 while (!toExplore.isEmpty()) {
 Vertex* next = toExplore.dequeue();
 if (next == v2) {
 return true;
 }
 for (Vertex* neighbor : graph.getNeighbors(next)) {
 if (!visited.contains(neighbor)) {
 visited += neighbor;
 toExplore.enqueue(neighbor)
 }
 }
 }
 return false;
}

7. isConnected

bool isConnected(BasicGraph& graph) {
 for (Vertex* v1 : graph.getVertexSet()) {
 for (Vertex* v2 : graph.getVertexSet()) {
 if (v1 != v2 && !isReachable(graph, v1, v2)) {
 return false;
 }
 }
 }
 return true;
}

 4

8. findMinimumVertexCover

Set<Vertex*> findMinimumVertexCover(BasicGraph& graph) {
 Set<Vertex*> best = graph.getVertexSet(); // worst case solution
 Set<Vertex*> chosen;
 Set<Edge*> coveredEdges;
 Vector<Vertex*> allVertices;
 for (Vertex* v : graph.getVertexSet()) {
 allVertices += v;
 }
 coverHelper(graph, chosen, coveredEdges, allVertices, 0, best);
 return best;
}

void coverHelper(BasicGraph& graph, Set<Vertex*>& chosen,
 Set<Edge*>& coveredEdges, Vector<Vertex*>& allVertices,
 int index, Set<Vertex*>& best) {
 if (chosen.size() >= best.size()) {
 // base case: current cover too large
 return;
 } else if (coveredEdges.size() == graph.getEdgeSet().size()) {
 // base case: found a new smaller cover that uses all edges;
 // remember it
 best = chosen;
 return;
 } else if (index == graph.getVertexSet().size()) {
 // base case: exhausted all vertices to explore
 return;
 } else {
 // recursive case: explore whether or not to include the current vertex
 // (the one at index) in the current vertex cover

 // choose not to include this vertex; explore
 coverHelper(graph, chosen, coveredEdges, allVertices, index + 1, best);

 // choose to include this vertex; explore
 chosen += allVertices[index];

 // remember which new edges are added here (so that we can un-­‐choose later)
 Set<Edge*> newEdges;
 for (Edge* e in graph.getEdgeSet(allVertices[index])) {
 if (!coveredEdges.contains(e)) {
 // must add this edge and its inverse (A -­‐> B and B -­‐> A)
 Edge* inverse = graph.getEdge(e-­‐>finish, e-­‐>start);
 newEdges += e, inverse;
 coveredEdges += e, inverse;
 }
 }
 coverHelper(graph, chosen, coveredEdges, allVertices, index + 1, best);

 // unchoose
 chosen -­‐= allVertices[index];
 coveredEdges -­‐= newEdges;
 }
}

