
CS106B

Spring 2016 Cynthia Lee

Section 8 (Week 9) Handout
Problem and solution authors include Marty Stepp.

This week is about graph algorithms and inheritance, with a final exam topics sheet attached.

1. Dijkstra and A*. Trace through Dijkstra’s algorithm on the following graph to find the shortest
paths from node A to each other node in the graph. Then use A* to find the shortest path from
A to G, using the heuristic where the distance between two nodes is the distance between
those two letters in the alphabet. (For example, the distance between B and D is 2.)

2. Kruskal. List the edges that Kruskal’s algorithm would select to be part of a minimum spanning
tree (MST) for the graph above. List them in the same order that Kruskal’s would add them to
the MST. Then give the MST cost.

 2

3. isCyclic. Write a function named isCyclic that accepts a reference to a BasicGraph and
returns true if a path can be made from any vertex back to that same vertex (a cycle), or false if
there are no cycles in the graph. To figure out whether a graph contains any cycles, use the
following pseudo-code algorithm. The algorithm involves "marking" vertices as being in
various states: unvisited, partially visited, or fully visited. It is up to you to decide how to
implement such marking behavior.

at the start, all vertices and edges are UNVISITED.
for each vertex v in the graph:
 if visit(graph, v) returns true, then the graph contains a cycle.

function visit(graph, v):
 v is now PARTIALLY VISITED.
 for each neighbor vertex v2 of v where the edge e from v -­‐> v2 is unvisited:
 mark that edge e as visited.
 if v2 is PARTIALLY VISITED, the graph contains a cycle.
 if v2 is UNVISITED and visit(graph, v2) returns true,
 the graph contains a cycle.
 v is now FULLY VISITED.

bool isCyclic(BasicGraph& graph) { ...

 3

4. Inheritance and polymorphism.

Consider the following classes;
assume that each is defined in its own
file.
class Hamburger : public Bacon {
public:
 virtual void m2() {
 cout << "H 2" << endl;
 Bacon::m2();
 }

 virtual void m4() {
 cout << "H 4" << endl;
 }
};

class Mayo : public Hamburger {
public:
 virtual void m3() {
 cout << "M 3" << endl;
 m1();
 }

 virtual void m4() {
 cout << "M 4" << endl;
 }
};

class Lettuce {
public:
 virtual void m1() {
 cout << "L 1" << endl;
 m2();
 }

 virtual void m2() {
 cout << "L 2" << endl;
 }
};

class Bacon : public Lettuce {
public:
 virtual void m1() {
 Lettuce::m1();
 cout << "B 1" << endl;
 }

 virtual void m3() {
 cout << "B 3" << endl;
 }
};

Now assume that the following variables are defined:

Lettuce* var1 = new Bacon();
Bacon* var2 = new Mayo();
Lettuce* var3 = new Hamburger();
Bacon* var4 = new Hamburger();
Lettuce* var5 = new Lettuce();

In the rows below, indicate in the right-hand column the
output produced by the statement in the left-hand
column. If the statement produces more than one line of
output, indicate the line breaks with slashes as in "x / y /
z" to indicate three lines of output with "x" followed by
"y" followed by "z". If the statement does not compile,
write "compiler error". If a statement would crash at
runtime or cause unpredictable behavior, write "crash".

Statement Output

a. var1-­‐>m1(); __________________

b. var1-­‐>m2(); __________________

c. var1-­‐>m3(); __________________

d. var2-­‐>m1(); __________________

e. var2-­‐>m2(); __________________

f. var2-­‐>m3(); __________________

g. var2-­‐>m4(); __________________

h. var3-­‐>m1(); __________________

i. var3-­‐>m2(); __________________

j. var4-­‐>m2(); __________________

k. var4-­‐>m3(); __________________

l. var4-­‐>m4(); __________________

m. ((Bacon*) var1)-­‐>m1(); __________________

n. ((Bacon*) var1)-­‐>m3(); __________________

o. ((Mayo*) var5)-­‐>m3(); __________________

p. ((Lettuce*) var4)-­‐>m3(); __________________

q. ((Hamburger*)var2)-­‐>m4(); __________________

r. ((Mayo*) var2)-­‐>m4(); __________________

