CS106B
Spring 2016 Cynthia Lee

Section 8 (Week 9) Handout

Problem and solution authors include Marty Stepp.

This week is about graph algorithms and inheritance, with a final exam topics sheet attached.

1. Dijkstra and A*. Trace through Dijkstra’s algorithm on the following graph to find the shortest
paths from node A to each other node in the graph. Then use A* to find the shortest path from
A to G, using the heuristic where the distance between two nodes is the distance between
those two letters in the alphabet. (For example, the distance between B and D is 2.)

2. Kruskal. List the edges that Kruskal’s algorithm would select to be part of a minimum spanning
tree (MST) for the graph above. List them in the same order that Kruskal’s would add them to

the MST. Then give the MST cost.




isCyclic. Write a function named isCyclic that accepts a reference to a BasicGraph and
returns true if a path can be made from any vertex back to that same vertex (a cycle), or false if
there are no cycles in the graph. To figure out whether a graph contains any cycles, use the
following pseudo-code algorithm. The algorithm involves "marking" vertices as being in
various states: unvisited, partially visited, or fully visited. It is up to you to decide how to
implement such marking behavior.

at the start, all vertices and edges are UNVISITED.
for each vertex v in the graph:
if visit(graph, v) returns true, then the graph contains a cycle.

function visit(graph, v):
v is now PARTIALLY VISITED.
for each neighbor vertex v2 of v where the edge e from v -> v2 is unvisited:
mark that edge e as visited.
if v2 is PARTIALLY VISITED, the graph contains a cycle.
if v2 is UNVISITED and visit(graph, v2) returns true,
the graph contains a cycle.
v is now FULLY VISITED.

bool isCyclic(BasicGraph& graph) { ...



4. Inheritance and polymorphism.

Consider the following classes; Now assume that the following variables are defined:
assume that each is defined in its own
file. Lettuce* varl = new Bacon();
class Hamburger : public Bacon { Bacon* var2 = new Mayo();
public: Lettuce* var3 = new Hamburger();
virtual void m2() { Bacon* var4 = new Hamburger();
cout << "H 2" << endl; Lettuce* var5 = new Lettuce();
Bacon::m2();
} In the rows below, indicate in the right-hand column the

output produced by the statement in the left-hand

virtual void ma() { column. If the statement produces more than one line of

cout << "H 4" << endl;

} output, indicate the line breaks with slashes as in "x /y /
}; z" to indicate three lines of output with "x" followed by
"y" followed by "z". If the statement does not compile,
class Mayo : public Hamburger { write "compiler error". If a statement would crash at
public: runtime or cause unpredictable behavior, write "crash".

virtual void m3() {
cout << "M 3" << endl;

) mi(); Statement Output
a. varl->mi();
virtual void m4() { b. varl->m2();

cout << "M 4" << endl;

} c. varl->m3();
¥ d. var2->mi();
class Lettuce { e. var2->m2();
public:

virtual void m1() { f. var2->m3();

cout << "L 1" << endl; g. var2->m4();
m2();

} h. var3->mi();

i. var3->m2();

virtual void m2() { '
cout << "L 2" << endl; j. vard->m2();
} k. var4d->m3();

}s
[. var4->ma();

class Bacon : public Lettuce { m. ((Bacon*) varil)->mi();

public:
virtual void mi1() { n. ((Bacon*) varl)->m3();
out <c 7B 1% cc enaly O ((Heyor) vars)-m0);
} p. ((Lettuce*) vard)->m3();
g. ((Hamburger*)var2)->m4();

virtual void m3() {

cout << "B 3" << endl; r. ((Mayo*) var2)->m4();

}
}s



