CS106B
Spring 2016 Cynthia Lee

Section 8 (Week 9) Solution

1. Dijkstra and A*.

Dijkstra: Final paths:

graph : {A:0,/, B:inf,/, C:inf,/, D:inf,/, E:inf,/, F:inf,/, G:inf,/} A to B: {A, B}, cost=4
pqueue: {A:0} Ato C: {A, C}, cost=5
remove A, process neighbors B/C/E, Ato D: {A, C, G, D}, cost=9
update B costto 4, Cto 5, Eto 1 Ato E: {A, E}, cost=1

graph : {A:0,/, B:4,A, C:5,A, D:inf,/, E:1,A, F:inf,/, G:inf,/} A to F: {A, B, F}, cost=6
pqueue: {E:1, B:4, C:5} Ato G: {A, C, G}, cost=8

remove E, process neighbor F, update F cost to 10

graph : {A:0,/, B:4,A, C:5,A, D:inf,/, E:1,A, F:10,E, G:inf,/}
pqueue: {B:4, C:5, F:10}

remove B, process neighbors C/F, update F cost to 6
graph : {A:0,/, B:4,A, C:5,A, D:inf,/, E:1,A, F:6,B, G:inf,/}
pqueue: {C:5, F:6}

remove C, process neighbors D/G, update D cost to 12, G cost to 8
graph : {A:0,/, B:4,A, C:5,A, D:12,C, E:1,A, F:6,B, G:8,C}
pqueue: {F:6, G:8, D:12}

remove F ... no unprocessed neighbors, no updates.
remove G, process neighbor D, update D cost to 9

graph : {A:0,/, B:4,A, C:5,A, D:9,G, E:1,A, F:6,B, G:8,C}
pqueue: {D:9}

remove D... no unprocessed neighbors, no updates.

A*: Final path:
graph : {A:0,/, B:inf,/, C:inf,/, D:inf,/, E:inf,/, F:inf,/, G:inf,/} Ato G: {A, C, G}, cost=8

pqueue: {A:6}

remove A, process neighbors B/C/E,

update B costto 4, Cto 5, Eto 1

graph : {A:0,/, B:4,A, C:5,A, D:inf,/, E:1,A, F:inf,/, G:inf,/}
pqueue: {E:3, B:9, C:9}

remove E, process neighbor F, update F cost to 10

graph : {A:0,/, B:4,A, C:5,A, D:inf,/, E:1,A, F:10,E, G:inf,/}
pqueue: {B:9, C:9, F:11}

remove B, process neighbors C/F, update F cost to 6

graph : {A:0,/, B:4,A, C:5,A, D:inf,/, E:1,A, F:6,B, G:inf,/}
pqueue: {F:7, C:9}

remove F ... no unprocessed neighbors, no updates.

remove C, process neighbors D/G, update D costto 12, Gto 8
graph : {A:0,/, B:4,A, C:5,A, D:12,C, E:1,A, F:6,B, G:8,C}
pqueue: {G:8, D:15}

remove G... destination vertex found! Use prev pointers to build path.

2. Kruskal.
Edges: G-A, G-H, I-C, A-B, B-C, G-D (note that these are undirected, e.g., G-A is the same as
A-Q).
Cost: 26

3. isCyclic.

bool isCyclic(BasicGraph& graph) {

graph.resetData();

Map<Node*, string> mark;

for (Node* v : graph.getNodeSet()) {
mark[v] = "UNVISITED";

}

for (Node* v : graph.getNodeSet()) {
if (isCyclicHelper(graph, mark, v)) {

return true;

}

}

return false;

}

bool isCyclicHelper(BasicGraph& graph, Map<Node*, string>& mark, Node* v) {
mark[v] = "PARTIAL";
for (Arc* edge : graph.getArcSet(v)) {
if ('edge->visited) {
edge->visited = true;
Node* neighbor = edge->finish;

if (mark[neighbor] == "PARTIAL") {
return true;
} else if (mark[neighbor] == "UNVISITED") {

if (isCyclicHelper(graph, mark, neighbor)) {
return true;

}

}
}
mark[v] = "VISITED";
return false;

4. Inheritance and polymorphism.

Lettuce* varl = new Bacon();
Bacon* var2 = new Mayo();
Lettuce* var3 = new Hamburger();
Bacon* var4 = new Hamburger();
Lettuce* var5 = new Lettuce();

a. varl->m1(); cout << endl; //L1/1L2/B1

b. varl->m2(); cout << endl; /12

c. varl->m3(); cout << endl; // COMPILER ERROR

d. var2->m1(); cout << endl; /L1 /H2/L2/B1

e. var2->m2(); cout << endl; /I H2 /12

f. var2->m3(); cout << endl; // M3 /L1 /H2/12/B1

g. var2->m4(); cout << endl; // COMPILER ERROR

h. var3->m1(); cout << endl; //L1/H2/L2/B1

i. var3->m2(); cout << endl; //H2 /12

j. var4->ma2(); cout << endl; //H2 /12

k. var4->m3(); cout << endl; // B3

I. vard->m4(); cout << endl; // COMPILER ERROR

m. ((Bacon*) var1)->m1(); cout << endl; // L1 /L2 /B1// (unchanged behavior)
n. ((Bacon*) var1)->m3(); cout << end!; // B3 // (cast makes it compile)
0. ((Mayo*) var5)->m3(); cout << endl; // CRASH // (cast too far down)
p. ((Lettuce*) var4)->m3(); cout << endl; // COMPILER ERROR

g. ((Hamburger*) var2)->m4(); cout << endl; // M4

-

((Mayo*) var2)->m4(); cout << endl; // M4

