
CS106B

Spring 2016 Cynthia Lee

Section 8 (Week 9) Solution

1. Dijkstra and A*.

Dijkstra: Final paths:
graph : {A:0,/, B:inf,/, C:inf,/, D:inf,/, E:inf,/, F:inf,/, G:inf,/} A to B: {A, B}, cost=4
pqueue: {A:0} A to C: {A, C}, cost=5
remove A, process neighbors B/C/E, A to D: {A, C, G, D}, cost=9
update B cost to 4, C to 5, E to 1 A to E: {A, E}, cost=1
graph : {A:0,/, B:4,A, C:5,A, D:inf,/, E:1,A, F:inf,/, G:inf,/} A to F: {A, B, F}, cost=6
pqueue: {E:1, B:4, C:5} A to G: {A, C, G}, cost=8
remove E, process neighbor F, update F cost to 10
graph : {A:0,/, B:4,A, C:5,A, D:inf,/, E:1,A, F:10,E, G:inf,/}
pqueue: {B:4, C:5, F:10}
remove B, process neighbors C/F, update F cost to 6
graph : {A:0,/, B:4,A, C:5,A, D:inf,/, E:1,A, F:6,B, G:inf,/}
pqueue: {C:5, F:6}
remove C, process neighbors D/G, update D cost to 12, G cost to 8
graph : {A:0,/, B:4,A, C:5,A, D:12,C, E:1,A, F:6,B, G:8,C}
pqueue: {F:6, G:8, D:12}
remove F ... no unprocessed neighbors, no updates.
remove G, process neighbor D, update D cost to 9
graph : {A:0,/, B:4,A, C:5,A, D:9,G, E:1,A, F:6,B, G:8,C}
pqueue: {D:9}
remove D... no unprocessed neighbors, no updates.

A*: Final path:
graph : {A:0,/, B:inf,/, C:inf,/, D:inf,/, E:inf,/, F:inf,/, G:inf,/} A to G: {A, C, G}, cost=8
pqueue: {A:6}
remove A, process neighbors B/C/E,
update B cost to 4, C to 5, E to 1
graph : {A:0,/, B:4,A, C:5,A, D:inf,/, E:1,A, F:inf,/, G:inf,/}
pqueue: {E:3, B:9, C:9}
remove E, process neighbor F, update F cost to 10
graph : {A:0,/, B:4,A, C:5,A, D:inf,/, E:1,A, F:10,E, G:inf,/}
pqueue: {B:9, C:9, F:11}
remove B, process neighbors C/F, update F cost to 6
graph : {A:0,/, B:4,A, C:5,A, D:inf,/, E:1,A, F:6,B, G:inf,/}
pqueue: {F:7, C:9}
remove F ... no unprocessed neighbors, no updates.
remove C, process neighbors D/G, update D cost to 12, G to 8
graph : {A:0,/, B:4,A, C:5,A, D:12,C, E:1,A, F:6,B, G:8,C}
pqueue: {G:8, D:15}
remove G… destination vertex found! Use prev pointers to build path.

 2

2. Kruskal.
Edges: G-A, G-H, I-C, A-B, B-C, G-D (note that these are undirected, e.g., G-A is the same as
A-G).
Cost: 26

3. isCyclic.

bool isCyclic(BasicGraph& graph) {
 graph.resetData();
 Map<Node*, string> mark;
 for (Node* v : graph.getNodeSet()) {
 mark[v] = "UNVISITED";
 }
 for (Node* v : graph.getNodeSet()) {
 if (isCyclicHelper(graph, mark, v)) {
 return true;
 }
 }
 return false;
}

bool isCyclicHelper(BasicGraph& graph, Map<Node*, string>& mark, Node* v) {
 mark[v] = "PARTIAL";
 for (Arc* edge : graph.getArcSet(v)) {
 if (!edge-­‐>visited) {
 edge-­‐>visited = true;
 Node* neighbor = edge-­‐>finish;
 if (mark[neighbor] == "PARTIAL") {
 return true;
 } else if (mark[neighbor] == "UNVISITED") {
 if (isCyclicHelper(graph, mark, neighbor)) {
 return true;
 }
 }
 }
 }
 mark[v] = "VISITED";
 return false;
}

 3

4. Inheritance and polymorphism.

Lettuce* var1 = new Bacon();
Bacon* var2 = new Mayo();
Lettuce* var3 = new Hamburger();
Bacon* var4 = new Hamburger();
Lettuce* var5 = new Lettuce();

a. var1->m1(); cout << endl; // L1 / L2 / B1

b. var1->m2(); cout << endl; // L2

c. var1->m3(); cout << endl; // COMPILER ERROR

d. var2->m1(); cout << endl; // L1 / H2 / L2 / B1

e. var2->m2(); cout << endl; // H2 / L2

f. var2->m3(); cout << endl; // M3 / L1 / H2 / L2 / B1

g. var2->m4(); cout << endl; // COMPILER ERROR

h. var3->m1(); cout << endl; // L1 / H2 / L2 / B1

i. var3->m2(); cout << endl; // H2 / L2

j. var4->m2(); cout << endl; // H2 / L2

k. var4->m3(); cout << endl; // B3

l. var4->m4(); cout << endl; // COMPILER ERROR

m. ((Bacon*) var1)->m1(); cout << endl; // L1 / L2 / B1 // (unchanged behavior)

n. ((Bacon*) var1)->m3(); cout << endl; // B3 // (cast makes it compile)

o. ((Mayo*) var5)->m3(); cout << endl; // CRASH // (cast too far down)

p. ((Lettuce*) var4)->m3(); cout << endl; // COMPILER ERROR

q. ((Hamburger*) var2)->m4(); cout << endl; // M4

r. ((Mayo*) var2)->m4(); cout << endl; // M4

