This week is about graphs with vertices and edges. The first couple pages are cheat sheets for graph terminology and common search algorithms.

Recommended problems: #4, #5

Extra practice problems: 18.7, 18.12 (from Textbook)

graph: A data structure containing:
- a set of vertices V (sometimes called "nodes"),
- a set of edges E ("arcs"), where each is a connection between 2 vertices.

degree: number of edges touching a given vertex.

path: A path from vertex A to B is a sequence of edges that can be followed starting from A to reach B.
- can be represented as vertices visited, or edges taken

neighbor or **adjacent:** Two vertices connected directly by an edge.

reachable: Vertex A is reachable from B if a path exists from A to B.

connected graph: A graph is connected if every vertex is reachable from every other.

cycle: A path that begins and ends at the same vertex.
- **acyclic graph:** One that does not contain any cycles.
- **loop:** An edge directly from a vertex to itself.

weight: Cost associated with a given edge.
- weighted graph: One where edges have weights (see graph adjacent).

directed graph: A graph where edges are one-way connections.

undirected graph: A graph where edges don’t have a direction.

depth-first search (DFS): Finds a path between two vertices by exploring each possible path as far as possible before backtracking
- Often implemented recursively

breadth-first search (BFS): Finds a path between two vertices by taking one step down all paths and then immediately backtracking.
- Often implemented by maintaining a queue of vertices to visit.

Dijkstra's algorithm: Finds paths between one vertex and all other vertices by maintaining information about how to reach each vertex (cost and previous vertex) and continually improving that information until it reaches the best solution.
- Often implemented by maintaining a priority queue of vertices to visit.

A* algorithm: A variation of Dijkstra's algorithm that incorporates a heuristic function to prioritize the order in which to visit the vertices.

minimum spanning tree: the set of connected edges with the smallest total weight that covers every vertex in the graph

Kruskal's algorithm: An algorithm to find the minimum spanning tree of a graph
We present you with the general pseudo-code for all graph search algorithms we've studied this quarter. The major difference between them is the actual structure of the “todo list”. In DFS the list is a stack, in BFS it is a queue, and in Dijkstra’s Algorithm it is a priority queue.

```
Make a todo list of paths
Put a path with just the start in the todo list
While the todo list isn’t empty
    Take a path out of the todo list
    Call the last node in the path “currNode”
    If “currNode” is the goal, you are done.
    If you have seen currNode before, skip it.
    for all neighbors of currNode
        Make a newPath = path + neighbor
        Add the new path to the todo list
```

Important parts of Stanford Graph library: (more online)

<table>
<thead>
<tr>
<th>BasicGraph()</th>
<th>g.getVertex(name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.addEdge(v1, v2);</td>
<td>g.getVertexSet()</td>
</tr>
<tr>
<td>g.addVertex(vertex);</td>
<td>g.isConnected(v1, v2)</td>
</tr>
<tr>
<td>g.clear();</td>
<td>g.isEmpty()</td>
</tr>
<tr>
<td>g.getEdge(v1, v2)</td>
<td>g.removeEdge(v1, v2);</td>
</tr>
<tr>
<td>g.getEdgeSet()</td>
<td>g.removeVertex(vertex);</td>
</tr>
<tr>
<td>g.getEdgeSet(vertex)</td>
<td>g.size()</td>
</tr>
<tr>
<td>g.getNeighbors(vertex)</td>
<td>g.toString()</td>
</tr>
</tbody>
</table>

```
struct Vertex {
    string name;
    Set<Edge*> edges;

double cost; // initially 0.0
bool visited; // initially false
Node* previous; // initially NULL
};
```

```
struct Edge {
    Vertex* start;
    Vertex* finish;
    double cost;
    bool visited; // initially false
};
```
1. Depth-First Search (DFS).
Write the paths that a depth-first search would find from vertex A to all other vertices in the following graphs. If a given vertex is not reachable from vertex A, write "no path" or "unreachable".

- in Graph 1
- in Graph 6

2. Breadth-First Search (BFS).
Write the paths that a breadth-first search would find from vertex A to all other vertices in the following graphs. Which paths are shorter than the ones found by DFS in the previous problem?

- in Graph 1
- in Graph 6

Which paths found by DFS and BFS on Graph 6 in the previous problems are not minimal weight? What are the minimal weight paths from vertex A to all other nodes? (Just inspect the graph manually.)

4. isReachable.
Write a function named isReachable that returns true if a path can be made from the vertex v1 to the vertex v2, or false if not. If the two vertices are the same, return true. Use either BFS or DFS, described in the reference above. Bonus: do this problem twice with both BFS and DFS.

bool isReachable(BasicGraph& graph, Vertex* v1, Vertex* v2) { ...}
5. isConnected.

Write a function named isConnected that returns true if a path can be made from every vertex to any other vertex, or false if there is any vertex cannot be reached by a path from some other vertex. An empty graph is defined as being connected. You can use the isReachable function from the previous problem to help solve this one.

```cpp
bool isConnected(BasicGraph& graph) { ... }
```

6. findMinimumVertexCover.

Write function named findMinimumVertexCover that returns a set of vertex pointers identifying a minimum vertex cover. A vertex cover is a subset of an undirected graph’s vertices such that each and every edge in the graph is incident to at least one vertex in the subset. A minimum vertex cover is a vertex cover of the smallest possible size. Consider the following graph on the left:

<table>
<thead>
<tr>
<th>Graph</th>
<th>Vertex Covers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each of the four illustrations after it on the right shows some vertex cover (shaded nodes are included in the vertex cover, and hollow ones are excluded). Each one is a vertex cover because each edge touches at least one vertex in the cover. The two vertex covers on the right are minimum vertex covers, because there is no smaller vertex cover.

Understand that because the graph is undirected, that means for every edge that leads from some vertex v1 to v2, there will be an edge that leads from v2 to v1. If there are two or more minimum vertex covers, then you can return any one of them. Think of this as a backtracking problem. The implementation of this function should consider every possible vertex subset, keeping track of the smallest one that covers the entire graph. Try all possible vertex combinations using a "choose-explore-unchoose" pattern and keep track of state along the way.

```cpp
Set<Vertex*> findMinimumVertexCover(BasicGraph& graph) { ... }
```

7. Dijkstra's Algorithm

Trace and write the path that Dijkstra’s Algorithm would find from vertex A to D in Graph 6. Is the path shorter than the one found by BFS? Why or why not?