Today's Topics

• Logistics
 • Regrade requests due Friday
 • We know you are working hard on the assignments. We have decided to give everyone an extra late day.

• Recap: Heap enqueue and dequeue
• Binary Search Trees
Heap Operations

Remember that there are three important priority queue operations:

1. `peek()` : return an element of h with the smallest key.
2. `enqueue(k, e)` : add an element e with key k into the heap.
3. `dequeue()` : removes the smallest element from h.

We can use a heap for this. The "heap invariant" is: all children must have a lower priority than their parent.

http://www.cs.usfca.edu/~galles/visualization/Heap.html

YEAH Hours animation: https://www.youtube.com/watch?v=Z86ZDMdkUyo#t=39m36s
Binary Search Trees

• Binary trees are frequently used in searching.
• Binary Search Trees (BSTs) have an *invariant* that says the following:

For every node, X, all the items in its left subtree are smaller than X, and the items in the right tree are larger than X.
Binary Search Trees

Binary Search Tree

Not a Binary Search Tree
Binary Search Trees have an average depth on the order of $\log_2(n)$: very nice!
In order to use binary search trees (BSTs), we must define and write a few methods for them (and they are all recursive!)

Easy methods:
1. findMin()
2. findMax()
3. contains()
4. add()

Hard method:
5. remove()
Binary Search Trees: findMin()

findMin():
Start at root, and go left until a node doesn’t have a left child.

findMax():
Start at root, and go right until a node doesn’t have a right child.
Binary Search Trees: contains()

Does tree T contain X?
1. If T is empty, return false
2. If T is X, return true
3. Recursively call either T→left or T→right, depending on X’s relationship to T (smaller or larger).
Binary Search Trees: add(value)

How do we add 5?

Similar to contains()
1. If T is empty, add at root
2. Recursively call either T→left or T→right, depending on X’s relationship to T (smaller or larger).
3. If node traversed to is NULL, add
Binary Search Trees: remove(value)

Harder. Several possibilities.
1. Search for node (like contains)
2. If the node is a leaf, just delete (phew)
3. If the node has one child, “bypass” (think linked-list removal)
4. …

How do we delete 4?
Binary Search Trees: remove(value)

4. If a node has two children:

 Replace with smallest data in the right subtree, and recursively delete that node (which is now empty).

 Note: if the root holds the value to remove, it is a special case…

How do we remove 2?
BSTs and Sets

Guess what? BSTs make a terrific container for a set

Let's talk about Big O (average case)

- findMin()? $O(\log n)$
- findMax()? $O(\log n)$
- insert()? $O(\log n)$
- remove()? $O(\log n)$

Great! That said...what about worst case?
Balancing Trees

Insert the following into a BST: 20, 33, 50, 61, 87, 99

What kind of tree do we get?
We get a Linked List Tree, and $O(n)$ behavior :(

What we want is a "balanced" tree (that is one nice thing about heaps -- they're always balanced!)
Balancing Trees

But, bad balancing can also be problematic...

This tree is balanced, but only at the root.
There are algorithms (AVL, Red-Black, etc.) that will balance during insertion. Knowing the algorithms is beyond the scope of this class, but you can play around: https://www.cs.usfca.edu/~galles/visualization/AVLtree.html
void doorOne(Tree * tree) {
 if (tree == NULL) return;
 cout << tree->value << " ";
 doorOne(tree->left);
 doorOne(tree->right);
}

void doorTwo(Tree * tree) {
 if (tree == NULL) return;
 doorTwo(tree->left);
 cout << tree->value << " ";
 doorTwo(tree->right);
}

void doorThree(Tree * tree) {
 if (tree == NULL) return;
 doorThree(tree->left);
 doorThree(tree->right);
 cout << tree->value << " ";
}
Traversing a BST

There are four different ways to traverse a BST:

1. In-order traversal (recursive)
2. Pre-order traversal (recursive)
3. Post-order traversal (recursive)
4. Level-order traversal ("breadth first search") (not recursive) -- we will have an entire class on BFS!

There are different reasons for traversing in different ways (we'll see some!)
There are four different ways to traverse a BST:

1. In-order traversal (recursive)
2. Pre-order traversal (recursive)
3. Post-order traversal (recursive)
4. Level-order traversal ("breadth first search") (not recursive) -- we will have an entire class on BFS!

There are different reasons for traversing in different ways (we'll see some!)
In-Order Traversal

Pseudocode:

1. base case: if current == NULL, return
2. recurse left
3. do something with current node
4. recurse right
In-Order Traversal Example: printing

Current Node: 6
1. current not NULL
2. recurse left

Output:
In-Order Traversal Example: printing

Current Node: 2
1. current not NULL
2. recurse left

Output:
In-Order Traversal Example: printing

Current Node: 1
1. current not NULL
2. recurse left

Output:
In-Order Traversal Example: printing

Current Node: NULL
1. current NULL: return

Output:
In-Order Traversal Example: printing

Current Node: 1
1. current not NULL
2. recurse left
3. print "1"
4. recurse right

Output: 1
In-Order Traversal Example: printing

Current Node: NULL
1. current NULL: return

Output: 1
In-Order Traversal Example: printing

Current Node: 1
1. current not NULL
2. recurse left
3. print "1"
4. recurse right
(function ends)

Output: 1
In-Order Traversal Example: printing

Current Node: 2
1. current not NULL
2. recurse left
3. print "2"
4. recurse right

Output: 1 2
In-Order Traversal Example: printing

Current Node: 5
1. current not NULL
2. recurse left

Output: 1 2
In-Order Traversal Example: printing

Output: 1 2

Current Node: 3
1. current not NULL
2. recurse left
In-Order Traversal Example: printing

Current Node: NULL
1. current NULL: return

Output: 1 2
In-Order Traversal Example: printing

Current Node: 3
1. current not NULL
2. recurse left
3. print "3"
4. recurse right

Output: 1 2 3
In-Order Traversal Example: printing

Current Node: 4
1. current not NULL
2. recurse left

Output: 1 2 3
In-Order Traversal Example: printing

Current Node: NULL
1. current NULL, return

Output: 1 2 3
In-Order Traversal Example: printing

Current Node: 4
1. current not NULL
2. recurse left
3. print "4"
4. recurse right

Output: 1 2 3 4
In-Order Traversal Example: printing

Current Node: NULL
1. current NULL, return

Output: 1 2 3 4
In-Order Traversal Example: printing

Current Node: 4
1. current not NULL
2. recurse left
3. print "4"
4. recurse right
(function ends)

Output: 1 2 3 4
In-Order Traversal Example: printing

Current Node: 3
1. current not NULL
2. recurse left
3. print "3"
4. recurse right
(function ends)

Output: 1 2 3 4
In-Order Traversal Example: printing

Current Node: 5
1. current not NULL
2. recurse left
3. print "5"
4. recurse right

Output: 1 2 3 4 5
In-Order Traversal Example: printing

Output: 1 2 3 4 5

Current Node: NULL
1. current NULL, return
In-Order Traversal Example: printing

Current Node: 5
1. current not NULL
2. recurse left
3. print "5"
4. recurse right
(function ends)

Output: 1 2 3 4 5
In-Order Traversal Example: printing

Current Node: 2
1. current not NULL
2. recurse left
3. print "2"
4. recurse right
(function ends)

Output: 1 2 3 4 5
In-Order Traversal Example: printing

Current Node: 6
1. current not NULL
2. recurse left
3. print "6"
4. recurse right

Output: 1 2 3 4 5 6
In-Order Traversal Example: printing

Current Node: 7
1. current not NULL
2. recurse left

Output: 1 2 3 4 5 6
In-Order Traversal Example: printing

Output: 1 2 3 4 5 6

Current Node: NULL
1. current NULL, return
In-Order Traversal Example: printing

Current Node: 7
1. current not NULL
2. recurse left
3. print "7"
4. recurse right

Output: 1 2 3 4 5 6 7
In-Order Traversal Example: printing

Current Node: NULL
1. current NULL, return

Output: 1 2 3 4 5 6
In-Order Traversal Example: printing

Current Node: 7
1. current not NULL
2. recurse left
3. print "7"
4. recurse right
(function ends)

Output: 1 2 3 4 5 6 7
In-Order Traversal Example: printing

Current Node: 6
1. current not NULL
2. recurse left
3. print "6"
4. recurse right
(function ends)

Output: 1 2 3 4 5 6 7
Pre-Order Traversal

Output: 6 2 1 5 3 4 7

Pseudocode:

1. base case: if current == NULL, return
2. do something with current node
3. recurse left
4. recurse right
void doorOne(Tree * tree) {
 if (tree == NULL) return;
 cout << tree->value << " ";
 doorOne(tree->left);
 doorOne(tree->right);
}
Post-Order Traversal

Pseudocode:
1. base case: if current == NULL, return
2. recurse left
3. recurse right
4. do something with current node

Output: 1 4 3 5 2 7 6
Coding up a StringSet

```cpp
struct Node {
    string str;
    Node *left;
    Node *right;

    // constructor for new Node
    Node(string s) {
        str = s;
        left = NULL;
        right = NULL;
    }
};

class StringSet {
    ...
};
```
References and Advanced Reading

• References:
 • http://www.openbookproject.net/thinkcs/python/english2e/ch21.html
 • https://www.tutorialspoint.com/data_structures_algorithms/binary_search_tree.htm
 • https://en.wikipedia.org/wiki/Binary_search_tree

• Advanced Reading:
 • Tree (abstract data type), Wikipedia: http://en.wikipedia.org/wiki/Tree_(data_structure)
 • Tree visualizations: http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
 • Wikipedia article on self-balancing trees (be sure to look at all the implementations): http://en.wikipedia.org/wiki/Self-balancing_binary_search_tree

 • Red Black Trees:
 • https://www.cs.auckland.ac.nz/software/AlgAnim/red_black.html

 • YouTube AVL Trees: http://www.youtube.com/watch?v=YKt1kquKScY
 • Wikipedia article on AVL Trees: http://en.wikipedia.org/wiki/AVL_tree

 • Really amazing lecture on AVL Trees: https://www.youtube.com/watch?v=FNeL18KsWPe
Level-order traversal:

We need a queue, and we can't do this recursively.

Pseudocode:

1. insert root into queue
2. while queue not empty:
3. dequeue node
4. print node value
5. enqueue left
6. enqueue right

Output: 6 2 7 1 5 3 4
Some Balanced Tree Data Structures

- 2-3 tree
- AA tree
- AVL tree
- Red-black tree
- Scapegoat tree
- Splay tree
- Treap