Binary Search Trees
Part One
Taking Stock: Where Are We?
✓ Stack
✓ Queue
✓ Vector
✓ string
✓ PriorityQueue
☐ Map
☐ Set
☐ Lexicon
Implementing Map and Set
An Inefficient Implementation

- We could implement the Set as an unsorted list of all the values it contains.
 - To add an element:
 - Check if the element already exists.
 - If not, append it.
 - If not, append it.
 - To remove an element:
 - Find and remove it from the list.
 - To see if an element exists:
 - Search the list for the element.
An Inefficient Implementation

- We could implement the Set as a sorted list of all the values it contains.
- To add an element:
 - Check if the element already exists.
 - If not, insert it in the right spot.
- To remove an element:
 - Find and remove it from the list.
- To see if an element exists:
 - Search the list for the element.

\[O(n)\] \[O(n)\] \[O(\log n)\]
An Entirely Different Approach
Binary Search Trees

- The data structure we have just seen is called a **binary search tree** (or **BST**).
- The tree consists of a number of **nodes**, each of which stores a value and has zero, one, or two **children**.
- **Key structural property:** All values in a node’s left subtree are **smaller** than the node’s value, and all values in a node’s right subtree are **greater** than the node’s value.
A Binary Search Tree Is Either…

an empty tree, represented by nullptr, or…

... a single node, whose left subtree is a BST of smaller values ...

... and whose right subtree is a BST of larger values.
Binary Search Tree Nodes

```
struct Node {
    Type value;
    Node* left;  // Smaller values
    Node* right; // Bigger values
}
```

Kinda like a linked list, but with two pointers instead of just one!
Operation 1: Searching a BST
A Binary Search Tree Is Either...

an empty tree, represented by `nullptr`

If you're looking for something in an empty BST, it's not there! Sorry.
A Binary Search Tree Is Either...

- an empty tree, represented by `nullptr`, or...

 ... a single node, whose left subtree is a BST of smaller values ...

 ![Diagram]

 ... and whose right subtree is a BST of larger values.
Good exercise:
Rewrite this function iteratively!
Operation 2: Inserting into a BST
Inserting into a BST
Inserting into a BST
Let's Code it Up!
A Binary Search Tree Is Either...

an empty tree, represented by `nullptr`
A Binary Search Tree Is Either…

- an empty tree, represented by `nullptr`, or...
- a single node, whose left subtree is a BST of smaller values ...
- and whose right subtree is a BST of larger values.
Time-Out for Announcements!
Assignment 5

- Assignment 5 is due next Friday.

 - **Recommendation:** Complete the Vector implementation and the sorted, singly-linked list implementation by the end of this evening.

 - Try to complete the unsorted, doubly-linked list implementation by Monday.

- Questions? Concerns? Ad hominem attacks? Stop by the LaIR, our office hours, or ask on Piazza!
WiCS Casual CS Dinner

• WiCS will be holding their second biquarterly Casual CS Dinner this upcoming Monday from 6PM – 7PM in the WCC.

• Everyone is welcome – these are fantastic events!

• RSVP using this link.
Justice Sotomayor Visit

- Justice Sonia Sotomayor is coming to Stanford on March 10th.
- There’s a lottery system for tickets. I would highly recommend putting your name in! She’s really impressive!
Back to our regularly scheduled programming...
So, how efficient is this?
Insertion Order Matters

- Suppose we create a BST of numbers in this order:

 4, 2, 1, 3, 6, 5, 7
Insertion Order Matters

- Suppose we create a BST of numbers in this order:

 1, 2, 3, 4, 5, 6, 7
Tree Terminology

- The **height** of a tree is the number of nodes in the longest path from the root to a leaf.
- By convention, an empty tree has height -1.
Tree Terminology

- The **height** of a tree is the number of nodes in the longest path from the root to a leaf.
- By convention, an empty tree has height -1.
Efficiency Questions

• What is the big-O complexity of adding a node into a BST, or searching a BST for a given value?

 • \textbf{Answer:} It depends on the height of a tree!

 • Each step in these processes does \(O(1)\) work and then drops us one level lower in the BST.

 • The overall time spent is \(O(h)\), where \(h\) is the height of the tree.
Tree Heights

- What are the maximum and minimum heights of a tree with n nodes?
- Maximum height: all nodes in a chain. Height is $O(n)$.
- Minimum height: Tree is as complete as possible. Height is $O(\log n)$.
Keeping the Height Low

- There are many modifications of the binary search tree designed to keep the height of the tree low (usually $O(\log n)$).

- A **self-balancing binary search tree** is a binary search tree that automatically adjusts itself to keep the height low.

- The textbook talks about AVL trees, which are one way you can do this.

- You don’t need to know these techniques for CS106B: honestly, they’re complicated, require a ton of memorization, and rarely come up.
 - Take CS166 if you want to learn more!
Next Time

- **More BST Fun**
 - Some other cool tricks and techniques!
- **Custom Types in Sets**
 - Resolving a longstanding issue.