Binary Search Trees
Part Two
Recap from Last Time
Binary Search Trees

- A **binary search tree** (or **BST**) is a data structure often used to implement maps and sets.
- The tree consists of a number of **nodes**, each of which stores a value and has zero, one, or two **children**.
- **Key structural property:** All values in a node’s left subtree are **smaller** than the node’s value, and all values in a node’s right subtree are **greater** than the node’s value.
A Binary Search Tree Is Either...

an empty tree, represented by *nullptr*, or...

... a single node, whose left subtree is a BST of smaller values ...

... and whose right subtree is a BST of larger values.
Tree Terminology

- The **height** of a tree is the number of nodes in the longest path from the root to a leaf.
- By convention, an empty tree has height -1.
Tree Terminology

- The **height** of a tree is the number of nodes in the longest path from the root to a leaf.
- By convention, an empty tree has height -1.
Efficiency Questions

• In a *balanced* BST, the cost of doing an insertion or lookup is $O(\log n)$.

• Although we didn’t cover this, the cost of a deletion is also $O(\log n)$ (play around with this in section!)

• The runtimes of these operations depend on the height of the BST, which we’re going to assume is $O(\log n)$ going forward.
New Stuff!
Walking Trees
Printing a Tree

- BSTs store their elements in sorted order.
- By visiting the nodes of a BST in the right order, we’ll get back the nodes in sorted order!
 - (This is also why iterating over a `Map` or `Set` gives you the keys/elements in sorted order!)
A Binary Search Tree Is Either...

an empty tree, represented by `nullptr`, or...

... a single node, whose left subtree is a BST of smaller values ...

... and whose right subtree is a BST of larger values.
Inorder Traversals

• The particular recursive pattern we just saw is called an *inorder traversal* of a binary tree.

• Specifically:
 • Recursively visit all the nodes in the left subtree.
 • Visit the node itself.
 • Recursively visit all the nodes in the right subtree.
Getting Rid of Trees
Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.
A Binary Search Tree Is Either…

an empty tree, represented by

nullptr, or…

… a single node, whose left subtree is a BST of smaller values …

… and whose right subtree is a BST of larger values.
Postorder Traversals

• The particular recursive pattern we just saw is called a \textit{postorder traversal} of a binary tree.

• Specifically:
 • Recursively visit all the nodes in the left subtree.
 • Recursively visit all the nodes in the right subtree.
 • Visit the node itself.
Time-Out for Announcements!
Assignment 5

- Assignment 5 is due this Friday at the start of class.

- **Recommendation:** Aim to complete the first three implementations by the end of tonight. Finish the binary heap by Wednesday.

- Questions? Ask your SL, stop by the LaIR, visit office hours, or ask on Piazza!
CS+SOCIAL GOOD PRESENTS
WINTER CAREERS PANEL & DISCUSSION
WHERE: Kehillah Hall, 2nd Floor Hillel
WHEN: February 28th, 6:00-7:30pm

Interested in using your CS skills for social impact? Come hear from people working on tech for social good - learn about career paths and ways to get involved! Dinner will be served at the event.

Moderated by Cynthia Lee

Featuring:
Lean In Exygy Lioness Udemy Facebook Google
Back to CS106B!
Has this ever happened to you?
What’s Going On?

- Internally, the `Map` and `Set` types are implemented using binary search trees.
- BSTs assume there’s a way to compare elements against one another using the relational operators.
- But you can’t compare two structs using the less-than operator!
- “There’s got to be a better way!”
Defining Comparisons

- Most programming languages provide some mechanism to let you define how to compare two objects.
- C has comparison functions, Java has the Comparator interface, Python has `__cmp__`, etc.
- In C++, we can use a technique called operator overloading to tell it how to compare objects using the `<` operator.
Doctor zhivago = /* ... */
Doctor acula = /* ... */

if (zhivago < acula) {
 /* ... */
}

Doctor zhivago = /* ... */
Doctor acula = /* ... */

if (zhivago < acula) {
 /* ... */
}
bool operator< (const Doctor& lhs, const Doctor& rhs) {
 /* ... */
}

Doctor zhivago = /* ... */
Doctor acula = /* ... */

if (zhivago < acula) {
 /* ... */
}
```cpp
bool operator< (const Doctor& lhs, const Doctor& rhs) {
    /*     ...     */
}

Doctor zhivago = /*     ...     */
Doctor acula   = /*     ...     */

if (zhivago < acula) {
    /*     ...     */
}  

C++ treats this as
operator< (zhivago, acula)
```
Overloading Less-Than

• To store custom types in Maps or Sets in C++, overload the less-than operator by defining a function like this one:

  ```cpp
  bool operator< (const Type& lhs, const Type& rhs);
  ```

• This function must obey four rules:
 • It is **consistent**: writing \(x < y \) always returns the same result given \(x \) and \(y \).
 • It is **irreflexive**: \(x < x \) is always false.
 • It is **transitive**: If \(x < y \) and \(y < z \), then \(x < z \).
 • It has **transitivity of incomparability**: If neither \(x < y \) nor \(y < x \) are true, then \(x \) and \(y \) behave indistinguishably.

• (These rules mean that \(<\) is a **strict weak order**; take CS103 for details!)
A standard technique for implementing the less-than operator is to use a \textit{lexicographical comparison}, which looks like this:

```cpp
bool operator< (const Type& lhs, const Type& rhs) {
    if (lhs.field1 != rhs.field1) {
        return lhs.field1 < rhs.field1;
    } else if (lhs.field2 != rhs.field2) {
        return lhs.field2 < rhs.field2;
    } else if (lhs.field3 != rhs.field3) {
        return lhs.field3 < rhs.field3;
    } ... {
    ...
    } else {  
        return lhs.fieldN < rhs.fieldN;
    }
}
```
One Last Cool Trick, If We Have Time
Filtering Trees
Range Searches

- We can use BSTs to do range searches, in which we find all values in the BST within some range.

- For example:
 - If the values in the BST are dates, we can find all events that occurred within some time window.
 - If the values in the BST are number of diagnostic scans ordered, we can find all doctors who order a disproportionate number of scans.
A Binary Search Tree Is Either...

- an empty tree, represented by `nullptr`, or...
- a single node, whose left subtree is a BST of smaller values...
- and whose right subtree is a BST of larger values.
A Binary Search Tree Is Either...

an empty tree, represented by `nullptr`, or...

... a single node, whose left subtree is a BST of smaller values...

... and whose right subtree is a BST of larger values.
A Binary Search Tree Is Either…

an empty tree, represented by `nullptr`, or…

… a single node, whose left subtree is a BST of smaller values…

… and whose right subtree is a BST of larger values.
A Binary Search Tree Is Either...

an empty tree, represented by

nullptr, or...

... a single node, whose left subtree
is a BST of smaller values...

... and whose right subtree is a BST of larger values.
Range Searches

• The cost of a range search in a balanced BST is $O(\log n + z)$, where z is the number of matches reported.
• In a general BST, it’s $O(h + z)$.
• Curious about where that analysis comes from? Come talk to me after class!
To Summarize:
A Binary Search Tree Is Either...

- an empty tree, represented by `nullptr`, or...

- a single node, whose left subtree is a BST of smaller values...

- and whose right subtree is a BST of larger values.
struct Node {
 int value;
 Node* left; // Smaller values
 Node* right; // Bigger values
};
bool contains(Node* root, const string& key) {
 if (root == nullptr) return false;
 else if (key == root->value) return true;
 else if (key < root->value) return contains(root->left, key);
 else return contains(root->right, key);
}

void insert(Node*& root, const string& key) {
 if (root == nullptr) {
 root = new Node;
 node->value = key;
 node->left = node->right = nullptr;
 } else if (key < root->value) {
 insert(root->left, key);
 } else if (key > root->value) {
 insert(root->right, key);
 } else {
 // Already here!
 }
}
```cpp
void printTree(Node* root) {
    if (root == nullptr) return;

    printTree(root->left);
    cout << root->value << endl;
    printTree(root->right);
}

void freeTree(Node* root) {
    if (root == nullptr) return;

    freeTree(root->left);
    freeTree(root->right);
    delete root;
}
```
bool operator< (const Type& lhs, const Type& rhs) {
 if (lhs.\textit{field1} != rhs.\textit{field1}) {
 return lhs.\textit{field1} < rhs.\textit{field1};
 } else if (lhs.\textit{field2} != rhs.\textit{field2}) {
 return lhs.\textit{field2} < rhs.\textit{field2};
 } else if (lhs.\textit{field3} != rhs.\textit{field3}) {
 return lhs.\textit{field3} < rhs.\textit{field3};
 } ... {
 ... {
 ... {
 } else {
 return lhs.\textit{fieldN} < rhs.\textit{fieldN};
 }
 }
}
Next Time

• *Beyond Data Structures*
 • Why are these ideas useful outside of the realm of sets and maps?

• *Huffman Encoding*
 • A powerful data compression algorithm.