CS 106B

Lecture 12: Memoization and Structs

Friday, April 28, 2017

Programming Abstractions
Spring 2017
Stanford University
Computer Science Department

Lecturer: Chris Gregg

reading:
Programming Abstractions in C++, Chapter 10

Today's Topics

- Logistics
- Practice Midterm: went pretty well from our end!
- You can still take the on-computer test and submit for a bonus point on your midterm
-We have put together a midterm information page on the website, with old midterms, study tips, and information about the exam: http://web.stanford.edu/ class/cs106b/handouts/midterm.html
-Assignment four: Boggle! (now has suggested milestones)
-Memoization
- More on Structs

The Triangle Game

https://www.youtube.com/watch?v=kbKtFN71Lfs\&feature=youtu.be

Assignment 4: Boggle

A classic board game with letter cubes (dice) that is not dog friendly: https://www.youtube.com/watch?v=2shOz1ZLw4c

Assignment 4b: Boggle

In Boggle, you can make words starting with any letter and going to any adjacent letter (diagonals, too), but you cannot repeat a letter-cube.

Memoization

| Tell me and I forget. Teach me and I rememoize.*

- Xun Kuang, 300 BCE
* Some poetic license used when translating quote

Beautiful Recursion

- Let's look at one of the most beautiful recursive definitions:

$$
\begin{aligned}
& F_{n}=F_{n-1}+F_{n-2} \\
& \text { where } F_{0}=0, F_{1}=1
\end{aligned}
$$

- This definition leads to this:

Beautiful Recursion

- And this:

The Fibonacci Sequence

$F_{n}=F_{n-1}+F_{n-2}$
where $F_{0}=0, F_{1}=1$

n	0	1	2	3	4	5	6	7	8	9
\ldots										
F_{n}	0	1	1	2	3	5	8	13	21	34

This is particularly easy to code recursively!

```
long plainRecursiveFib(int n) {
    if(n == 0)
        // base case
        return 0;
    } else if (n == 1) {
        // base case
        return 1;
    } else {
        // recursive case
        return plainRecursiveFib(n - 1) + plainRecursiveFib(n - 2);
    }
```


The Fibonacci Sequence

What happened??

The Fibonacci Sequence

What happened??

The Fibonacci Sequence

What happened??
Recursive Fibonacci

The Fibonacci Sequence

What happened??

The Fibonacci Sequence

Recursive Fibonacci

By the way:

$$
\begin{gathered}
3 \times 10^{-6} \mathrm{e}^{0.4852 n} \cong \mathrm{O}\left(1.62^{n}\right) \\
\mathrm{O}\left(1.62^{n}\right) \text { is technically } \mathrm{O}\left(2^{n}\right) \\
\text { because } \\
\mathrm{O}\left(1.62^{n}\right)<\mathrm{O}\left(2^{n}\right)
\end{gathered}
$$

We call this a "tighter bound," and we like round numbers, especially ones that are powers of two. :)

Fibonacci: Recursive Call Tree

This is basically the reverse of binary search: we are splitting into two marginally smaller cases, not splitting into half of the problem size!

Fibonacci: There is hope!

If we store the result of the first time we calculate a particular fib(n), we don't have to re-do it!

Memoization: Don't re-do unnecessary work!

Memoization: Store previous results so that in future executions, you don't have to recalculate them.
aka

Remember what you have already done!

Memoization: Don't re-do unnecessary work!

Cache: <empty>

Memoization: Don't re-do unnecessary work!

Cache: fib(2) = 1

Memoization: Don't re-do unnecessary work!

Cache: $\mathrm{fib}(2)=1, f i b(3)=2$

Memoization: Don't re-do unnecessary work!

Memoization: Don't re-do unnecessary work!

Cache: $\operatorname{fib}(2)=1, f i b(3)=2$

Memoization: Don't re-do unnecessary work!

Memoization: Don't re-do unnecessary work!

Cache: $\mathrm{fib}(2)=1, \mathrm{fib}(3)=2, \mathrm{fib}(4)=3$

Memoization: Don't re-do unnecessary work!

Cache: $\mathrm{fib}(2)=1, \mathrm{fib}(3)=2, \mathrm{fib}(4)=3, \mathrm{fib}(5)=5$

Memoization: Don't re-do unnecessary work!

Cache: $\mathrm{fib}(2)=1, \mathrm{fib}(3)=2, \mathrm{fib}(4)=3, \mathrm{fib}(5)=5$

Memoization: Don't re-do unnecessary work!

```
long memoizationFib(int n) {
    Map<int, long> cache;
    return memoizationFib(cache, n);
}
```


setup for helper function

Memoization: Don't re-do unnecessary work!

```
long memoizationFib(int n) {
    Map<int, long> cache;
    return memoizationFib(cache, n);
}
long memoizationFib(Map<int, long>&cache, int n) {
    if(n == 0) {
        // base case #1
        return 0;
    } else if (n == 1) {
        // base case #2
        return 1;
    } else if(cache.containsKey(n)) {
        // base case #3
        return cache[n];
    }
    // recursive case
    long result = memoizationFib(cache, n-1) + memoizationFib(cache, n-2);
    cache[n] = result;
    return result;
}
```


Memoization: Don't re-do unnecessary work!

Complexity?

Fibonacci: the bigger picture

There are actually many ways to write a fibonacci function.
This is a case where the plain old iterative function works fine:

```
long iterativeFib(int n) {
    if(n == 0) {
        return 0;
    }
    long prev0 = 0;
    long prev1 = 1;
    for (int i=n; i >= 2; i--) {
        long temp = prev0 + prev1;
        prev0 = prev1;
        prev1 = temp;
    }
    return prev1;
```

Recursion is used often, but not always.

Fibonacci: Okay, one more...

Another way to keep track of previously-computed values in fibonacci is through the use of a different helper function that simply passes along the previous values:

```
long passValuesRecursiveFib(int n) {
    if (n == 0) {
        return 0;
    }
    return passValuesRecursiveFib(n, 0, 1);
}
long passValuesRecursiveFib(int n, long p0, long p1) {
    if (n == 1) {
        // base case
        return p1;
    }
    return passValuesRecursiveFib(n-1, p1, p0 + p1);
}
```


More on Structs

We have mentioned structs already -- they are useful for keeping track of related data as one type, which can get used like any other type. You can think of a struct as the Lunchable of the C++ world.


```
struct Lunchable {
    string meat;
    string dessert;
    int numCrackers;
    bool hasCheese;
};
// Vector of Lunchables
Vector<Lunchable> lunchableOrder;
```


A Real Problem

Your cool picture from that trip to Europe doesn't fit on Instagram!

Bad Option \#1: Crop

You got cropped out!

Bad Option \#2: Resize

Stretchy castles look weird...

New Algorithm: Seam Carving!

New Algorithm: Seam Carving!

How can you change an image without changing its aspect ration, but while retaining the important information?

New Algorithm: Seam Carving!

We could delete an entire column of pixels, but we could also weave our way through a path of 1-pixel wide image that removes the least amount of stuff.

How to represent the path

```
A struct!
struct Coord {
    int row;
    int col;
};
```

A path is just a Vector of coordinates:
int main() \{
Coord myCord;
myCoord. row = 5;
myCoord.col = 7;
cout << myCord.row << endl;
Vector<Coord> path;
return 0;
\}

New Algorithm: Seam Carving!

Important pixels are ones that are considerably different from their neighbors.

New Algorithm: Seam Carving!

Let's write a recursive algorithm that can find the seam that minimizes the sum of all the importances of the pixels.

New Algorithm: Seam Carving!

Vector<Coord> getSeam(Grid<double> \&weight, Coord curr);

References and Advanced Reading

- References:

- https://en.wikipedia.org/wiki/Fibonacci number
- https://en.wikipedia.org/wiki/Seam carving

Extra Slides

