CS 1068

| ecture 12: Memoization
and Structs

Friday, April 28, 2017

Programming Abstractions
Spring 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:
Programming Abstractions in C++, Chapter 10

Today's Topics

®| Ogistics

ePractice Midterm: went pretty well from our end!
eYou can still take the on-computer test and submit for a bonus point on your
midterm

¢\\Ve have put together a midterm information page on the website, with old
midterms, study tips, and information about the exam: http.//web.stanford.edu/
class/cs106b/handouts/midterm.html

e Assignment four: Boggle! (how has suggested milestones)
e\Memoization
eMore on Structs

The Triangle Game

https://www.youtube.com/watch?v=kbKtFN7 1L fs&feature=youtu.be

Assignment 4. Boggle

A classic board game with letter cubes (dice) that is not dog
friendly: https://www.youtube.com/watch?v=2shOz1/Zl w4c

Assignment 4b: Boggle

% - O CS 106X Boggle

Play again? | Yes No

| crushed you, puny human!

Human 5 Computer 17

form coif coil coir corm firm

foil
room giro glim hoof iglu limo
imy mir m moor rimy

In Boggle, you can make words starting with any letter and going
to any adjacent letter (diagonals, t00), but you cannot repeat a
letter-cube.

Memoization

Tell me and I forget. Teach me
and [rememoize.*

- Xun Kuang, 300 BCE

* Some poetic license used when translating quote

Beautiful Recursion

Let's look at one of the most beautiful recursive definitions:

Fn :Fn-l ‘|‘Fn-2
where Fo=0, F1=1

- This definition leads to this:

Beautiful Recursion

And this:
End of month: R ® No. of Pairs:
1 .(_‘; 1
| I T

PR
- {:J; ‘

Beautlful Recursion

- And this:

13
21

Beautiful Recursion

And this:

Beautiful Recursion

And this:

Beautiful Recursion

- And this:

Beautiful Recursion

- And this:

The Fibonacci Sequence

F,=F. +F.» n 0 1 2 3 4 5 6 7 8 9
where Fo=0, F1=1 F, 01 1 2 3 5 8 13 21 34

This is particularly easy to code recursively!

long plainRecursiveFib(int n) {
if(n == 0) {
// base case ,
return 0; Let's play!
} else if (n == 1) {
// base case
return 1;
} else {
// recursive case
return plainRecursiveFib(n - 1) + plainRecursiveFib(n - 2);

The Fibonacci Sequence

What happened??

Recursive Fibonacci

40000
35000
30000
g 25000
o 20000
ig 15000
10000
5000

0
38 40 42 44 46 48 50

The Fibonacci Sequence

What happened??

Recursive Fibonacci
40000

35000 y — 3E_O6e0.4852x

O@"

’g 25000
o 20000
ig 15000
10000

5000

0

38 40 42 44 46 48 50

The Fibonacci Sequence

What happened??

Recursive Fibonacci

y = 3E_O6e0.4852x
R? =0.99986 /

O@"

https://www.youtube.co atch?v=gXNgEURMKIA

38 40 42 44 46 48 50

The Fibonacci Sequence

What happened??

Recursive Fibonacci

y = 3E-06e0-4852x
R*=0.99986 /

O@"

https://www.youtube.co atch?v=gXNgEURMKIA

38 40 42 44 46 48 50

The Fibonacci Sequence

Recursive Fibonacci By the Way:

35000 y= 3E_06e0. 44444

2 25000
& 20000
E 15000
10000
5000

0

3x107%eb482n=(0(1.62")
O(1.62") is technically O(2")
because
O(1.62") < O2"

We call this a "tighter bound," and we like round
numbers, especially ones that are powers of two. :)

38 40 42 44 46 48 50

Fibonacci: Recursive Call Tree

n=2>5
4/\
n=4 n=3
n=3 n=2 n=>2 n="1
n=2 n=1 n=1 n=0 n=-1 n=0

T
Z Yo\“) JUNIG, »
7 &?%«““ R Q

marginally smaller cases, not splitting into half of the problem size!

Filbonacci: There is hope!

notice! a repeat!
fib(3) is completely calculated twice

Filbonacci: There is hope!

more repeats'

onacci: There is hope!

L *
Ta, o
e,

let's leverage all the repeats!

Filbonacci: There is hope!

n="1 n=0

If we store the result of the first time we
calculate a particular fib(n), we don't have to
re-do it!

Memoization: Don't re-do unnecessary work!

Memoization: Store previous results so that in future
executions, you don’t have to recalculate them.

aka

Remember what you have already done!

Memoization: Don't re-do unnecessary work!

Cache: <empty>

Memoization: Don't re-do unnecessary work!

Cache: <empty>

Memoization: Don't re-do unnecessary work!

Cache: <empty>

Memoization: Don't re-do unnecessary work!

Cache: <empty>

Memoization: Don't re-do unnecessary work!

Cache: <empty>

Memoization: Don't re-do unnecessary work!

Cache: fib(2) = 1

Memoization: Don't re-do unnecessary work!

Cache: fib@) = 1, fib@) = 2

Memoization: Don't re-do unnecessary work!

n=1 n=0 Don't recurse! Use the cachel!

Cacheffib@) = 1l fib(3) = 2

Memoization: Don't re-do unnecessary work!

Cache: fib@) = 1, fib@) = 2

Memoization: Don't re-do unnecessary work!

n=2 n=1 n=1 n=20
/\
n=1 n=0 Don't recurse! Use the cachel!

Cache: fib(2) = 1Mfib(4) 3

Memoization: Don't re-do unnecessary work!

n=2>5
n=3]
n=3 n=2
W
n=2 n=1
W
n=1 n=0 Don't recurse! Use the cache!

Cache: fib(2) = 1, fib(3) = 2, fib(4) = 3

Memoization: Don't re-do unnecessary work!

Cache: fib(2) = 1, fib@) = 2, fib(4) = 3, fib(5) = 5

Memoization: Don't re-do unnecessary work!

done!

Cache: fib(2) = 1, fib@) = 2, fib(4) = 3, fib(5) = 5

Memoization: Don't re-do unnecessary work!

long memoizationFib(int n) {
Map<int, long> cache;
return memoizationFib(cache, n);

setup for helper function

Memoization: Don't re-do unnecessary work!

long memoizationFib(int n) {
Map<int, long> cache;
return memoizationFib(cache, n);

} |

long memoizationFib(Map<int, long>&cache, int n) { (gl; {
// base case #1 ’
return 0;

} else if (n == 1) {
// base case #2
return 1;
} else if(cache.containsKey(n)) {

// base case #3 éé)
) return cacheln];
// recursive case
long result = memoizationFib(cache, n-1) + memoizationFib(cache, n-2);
cache[n] = result; 2
return result;

Memoization: Don't re-do unnecessary work!

Complexity?

n=2 n=1 The recursive path only happens on the left...
R O(n log n) if using a map for the cache ==,
O(n) if using a hashmap for the cache <4

Fibonacci: the bigger picture

There are actually many ways to write a filbonacci function.

This is a case where the plain old iterative function works fine:

long iterativeFib(int n) {
if(n == 0) {
return 0;
s

long prevd = 0;

long prevl = 1;

for (int i=n; i >= 2; i--) {
long temp = prev@ + prevl;
prevo prevl;
prevl temp;

}

return prevl;

Recursion is used often,
but not always.

Fibonacci: Okay, one more...

Another way to keep track of previously-computed values
In filbonacci is through the use of a different helper
function that simply passes along the previous values:

long passValuesRecursiveFib(int n) {
if (n == 0) {
return 0,
I3

return passValuesRecursiveFib(n, 0, 1);

}

long passValuesRecursiveFib(int n, long p@, long pl) {
if (n == 1) {
// base case
return pl;

}

return passValuesRecursiveFib(n-1, pl1, p@ + pl);

More on Structs

We have mentioned structs already -- they are useful for
keeping track of related data as one type, which can get
used like any other type. You can think of a struct as the

[unchable of the C++ world.

struct Lunchable {
string meat;
string dessert;
int numCrackers;
bool hasCheese;

};

// Vector of Lunchables

A Real Problem

Bad Option #1: Crop

You got cropped out!

Bad Option #2: Resize

Stretchy castles look weird...

New Algorithm: Seam Carving!

New Algorithm: Seam Carving!

How can you change an image without changing its aspect ration,
but while retaining the important information?

New Algorithm: Seam Carving!

We could delete an entire column of pixels, but we could also
weave our way through a path of 1-pixel wide image that removes
the least amount of stuff.

How to represent the path

A struct!

struct Coord {
int row;
int col;

b

A path is just a Vector of coordinates:

int main() {
Coord myCord;
myCoord.row = 5;
myCoord.col = 7;
cout << myCord.row << endl;
Vector<Coord> path;
return 9;

New Algorithm: Seam Carving!

Important pixels are ones that are considerably different from their
neighbors.

New Algorithm: Seam Carving!

Let's write a recursive algorithm that can find the seam that
minimizes the sum of all the importances of the pixels.

New Algorithm: Seam Carving!

Vector<Coord> getSeam(Grid<double> &weight, Coord curr);

References and Advanced Reading

* References:
e hitps://en.wikipedia.org/wiki/Fibonacci number
e hitps://en.wikipedia.org/wiki/Seam carving

%,
O
O
)
M®
e
x
LLI

