
Wednesday, May 3, 2017

Programming Abstractions

Spring 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapter 11

CS 106B
Lecture 14:
Pointers

Today's Topics

•Logistics
•Midterm tomorrow night.
•You will be able to take the exam on computer or on paper. Make sure your battery is
charged!

•Introduction to Pointers
•What are pointers?
•Pointer Syntax
•Pointer Tips
•Pointer Practice
•Binky

•Back to classes
•The copy constructor and the assignment overload

C++ Challenge
• Challenge #1: Write a swap function:

? swap(?) {
 ...
}

int main() {
 // swap the two variables below, using a swap function
 int a = 5;
 int b = 12;
 swap (?);
 // at this point, a should equal 12 and b should equal 5
}

C++ Challenge
• Can we write a swap function in C++ using what we know

already? Yes, we can!
void swap(int &a, int &b) {
 int temp = a;
 a = b;
 b = temp;
}

int main() {
 // swap the two variables below, using a swap function
 int a = 5;
 int b = 12;
 swap (a, b);
 // at this point, a equals 12 and b equals 5
}

C++ Challenge
• So it turns out that references are a nice C++ feature, but they

abstract away some of the lower-level details that we might want
to know about.

• In order for our swap function to work, we must have access to
the original elements.

• This starts to fall under the category of "memory management"

• As a close relative to C, C++ gives us access to all of C's low-
level functionality.

Introduction to Pointers
• The next major topic is about the idea of a

pointer in C++. We need to use pointers
when we create data structures like
Vectors and Linked Lists (which we will do
next week!)

• Pointers are used heavily in the C
language, and also in C++, though we
haven't needed them yet.

• Pointers delve under the hood of
C++ to the memory system, and so
we must start to become familiar
with how memory works in a
computer.

Introduction to Pointers
• The memory in a computer can be thought of simply as a long row of boxes,

with each box having a value in it, and an index associated with it.
• If this sounds like an array, it's because it is!
• Computer memory (particularly, Random Access Memory, or RAM) is just a giant

array. The "boxes" can hold different types, but the numbers associated with
each box is just a number, one after the other:

7 2 8 3 14 99 -6 3 45 11
0 1 2 3 4 5 6 7 8 9

values (ints):
associated index:

cat dog apple tree shoe hand chair light cup toe
10 11 12 13 14 15 16 17 18 19

values (strings):
associated index:

Introduction to Pointers
• In C++, we just call those boxes variables, and we call the associated indices

addresses, because they can tell us where the variable is located (like a house
address).

cat dog apple tree shoe hand chair light cup toe
10 11 12 13 14 15 16 17 18 19

variable:
address:

string pet = "cat";
• What is the address of the pet variable? pet

cat
10

10
• The operating system determines the address,

not you! In this case it is 10, but it could be any
other address in memory.

The address of the
pet variable

Introduction to Pointers
• Guess what? If we store that memory address in a different variable, it is called

a pointer.

string pet = "cat"; Some other variable:

So, what is a pointer?
A memory address!

pet

cat
10

petPointer

10
1234

Introduction to Pointers

What is a pointer??

a memory address!

Introduction to Pointers
• We really don't care about the actual memory address numbers themselves,

and most often we will simply use a visual "pointer" to show that a variable
points to another variable:

string pet = "cat"; petPointer variable
pet

cat
10

petPointer

10
1234

Introduction to Pointers
• We really don't care about the actual memory address numbers themselves,

and most often we will simply use a visual "pointer" to show that a variable
points to another variable:

string pet = "cat";
pet

cat
petPointer

pet_pointer variable

Introduction to Pointers

What you need to know about pointers:

• Every location in memory, and therefore every variable, has an address.
• Every address corresponds to a unique location in memory.
• The computer knows the address of every variable in your program.
• Given a memory address, the computer can find out what value is stored at

that location.
• While addresses are just numbers, C++ treats them as a separate type. This

allows the compiler to catch cases where you accidentally assign a pointer
to a numeric variable and vice versa (which is almost always an error).

Pointer Syntax

Pointer syntax can get tricky. We will not go too deep -- you'll get
that when you take cs107!

Pointer Syntax #1: To declare a pointer of a particular type, use the
"*" (asterisk) symbol:

string *petPtr; // declare a pointer (which will hold a
 // memory address) to a string
int *agePtr; // declare a pointer to an int
char *letterPtr; // declare a pointer to a char

The type for petPtr is a "string *" and not a string. This is
important! A pointer type is distinct from the pointee type.

Pointer Syntax

Pointer Syntax #2: To get the address of another variable, use the
"&" (ampersand) character:

Pointer Syntax

Pointer Syntax #2: To get the address of another variable, use the
"&" (ampersand) character:

string *petPtr; // declare a pointer (which will hold a
 // memory address) to a string

petPtr

?
1234

?
(dead squirrel!)

Pointer Syntax

Pointer Syntax #2: To get the address of another variable, use the
"&" (ampersand) character:

string *petPtr; // declare a pointer (which will hold a
 // memory address) to a string
string pet = "cat"; // a string variable

pet

cat
10

petPtr

?
1234

?
(dead squirrel!)

Pointer Syntax #2: To get the address of another variable, use the
"&" (ampersand) character:

string *petPtr; // declare a pointer (which will hold a
 // memory address) to a string
string pet = "cat"; // a string variable

petPtr = &pet; // petPtr now holds the address of pet

Pointer Syntax

pet

cat
10

petPtr

10
1234

Pointer Syntax

Pointer Syntax #2: To get the address of another variable, use the
"&" (ampersand) character:

string *petPtr; // declare a pointer (which will hold a
 // memory address) to a string
string pet = "cat"; // a string variable

petPtr = &pet; // petPtr now holds the address of pet

you almost never need to do this in 106B!!!

Pointer Syntax
Pointer Syntax #3: To get value of the variable a pointer points to,
use the "*" (asterisk) character (in a different way than before!):

string *petPtr; // declare a pointer to a string
string pet = "cat"; // a string variable
petPtr = &pet; // petPtr now holds the address of pet
cout << *petPtr << endl; // prints out "cat"

pet

cat
10

petPtr

10
1234

This is called "dereferencing" the pointer: the asterisk says, "go to where
the pointer is pointing, and return the value stored there"

Pointer Tips
Pointer Tip #1: To ensure that we can tell if a pointer has a valid
address or not, set your declared pointer to NULL, which means
"no valid address" (it actually is just 0 in C++).

Instead of this:

string *petPtr; // declare a pointer to
 // a string with a dead squirrel

petPtr

?
1234

?
(dead squirrel!)

Pointer Tips
Pointer Tip #1: To ensure that we can tell if a pointer has a valid
address or not, set your declared pointer to NULL, which means
"no valid address" (it actually is just 0 in C++).

Do this:

string *petPtr = NULL; // declare a pointer to
 // a string that points to NULL

petPtr

0
1234

NULL
(no valid address)

Pointer Tips
Pointer Tip #2: If you are unsure if your pointer holds a valid
address, you should check for NULL

Do this:
void printPetName(string *petPtr) {
 if (petPtr != NULL) {
 cout << *petPtr << endl; // prints out the value
 // pointed to by petPtr
 // if it is not NULL
 }
}

Pointer Practice
These little boxes we draw to show the memory are so, so
important to understanding what is happening. Always draw boxes
when learning pointers!

int *nPtr = NULL;

What type does this pointer point to?
What should we draw?

Pointer Practice
These little boxes we draw to show the memory are so, so
important to understanding what is happening. Always draw boxes
when learning pointers!

int *nPtr = NULL;

What type does this pointer point to? an int
What should we draw?

Pointer Practice
These little boxes we draw to show the memory are so, so
important to understanding what is happening. Always draw boxes
when learning pointers!

int *nPtr = NULL;

What type does this pointer point to? an int
What should we draw? nPtr

0
7224

NULL

Pointer Practice
These little boxes we draw to show the memory are so, so
important to understanding what is happening. Always draw boxes
when learning pointers!

int *nPtr = NULL;

What type does this pointer point to? an int
What should we draw? nPtr

0
7224

NULL
We don't care what this number is,
just that it tells us where nPtr is in

memory.

Pointer Practice
These little boxes we draw to show the memory are so, so
important to understanding what is happening. Always draw boxes
when learning pointers!

int *nPtr = NULL;
int n = 16;

What should we draw? nPtr

0
7224

NULL

Pointer Practice
These little boxes we draw to show the memory are so, so
important to understanding what is happening. Always draw boxes
when learning pointers!

int *nPtr = NULL;
int n = 16;

nPtr

0
7224

NULL
n

16
42

Pointer Practice
These little boxes we draw to show the memory are so, so
important to understanding what is happening. Always draw boxes
when learning pointers!

int *nPtr = NULL;
int n = 16;
nPtr = &n;

nPtr

0
7224

NULL
n

16
42

What should we draw and fill in?

Pointer Practice
These little boxes we draw to show the memory are so, so
important to understanding what is happening. Always draw boxes
when learning pointers!

int *nPtr = NULL;
int n = 16;
nPtr = &n;

nPtr

42
7224

n

16
42 We now say that nPtr points to n.

Pointers

What is a pointer??

a memory address!

Pointer Practice

string *sPtr = NULL;
string s = "hello";
sPtr = &s;
cout << *sPtr << endl;

sPtr

0
8761

NULL

Pointer Practice

string *sPtr = NULL;
string s = "hello";
sPtr = &s;
cout << *sPtr << endl;

sPtr

0
8761

NULL
s

hello
99

Pointer Practice

string *sPtr = NULL;
string s = "hello";
sPtr = &s;
cout << *sPtr << endl;

sPtr

99
8761

s

hello
99

Pointer Practice

string *sPtr = NULL;
string s = "hello";
sPtr = &s;
cout << *sPtr << endl;

sPtr

99
8761

s

hello
99

Output:
 hello

Pointer Practice
string *sPtr = NULL;
string s = "hello";
cout << *sPtr << endl;

Output?

Pointer Practice
string *sPtr = NULL;
string s = "hello";
cout << *sPtr << endl;

Output?

Seg Fault! (crash!)

Pointer Practice
string *sPtr = NULL;
string s = "hello";
cout << *sPtr << endl;

Output?

Seg Fault! (crash!)

sPtr

0
8761

s

hello
99

NULL

Be careful when dereferencing pointers!

Pointer Practice

string *sPtr = NULL;
string s = "hello";
sPtr = &s;
*sPtr = "goodbye";
cout << s << endl;

• You can also use the dereferencing operator to set the value of the
"pointee" (the variable being pointed to):

Pointer Practice

string *sPtr = NULL;
string s = "hello";
sPtr = &s;
*sPtr = "goodbye";
cout << s << endl;

• You can also use the dereferencing operator to set the value of the
"pointee" (the variable being pointed to):

sPtr

0
8761

NULL

Pointer Practice

string *sPtr = NULL;
string s = "hello";
sPtr = &s;
*sPtr = "goodbye";
cout << s << endl;

• You can also use the dereferencing operator to set the value of the
"pointee" (the variable being pointed to):

sPtr

0
8761

NULL
s

hello
99

Pointer Practice

string *sPtr = NULL;
string s = "hello";
sPtr = &s;
*sPtr = "goodbye";
cout << s << endl;

• You can also use the dereferencing operator to set the value of the
"pointee" (the variable being pointed to):

sPtr

99
8761

s

hello
99

Pointer Practice

string *sPtr = NULL;
string s = "hello";
sPtr = &s;
*sPtr = "goodbye";
cout << s << endl;

• You can also use the dereferencing operator to set the value of the
"pointee" (the variable being pointed to):

sPtr

99
8761

s

goodbye

99

Pointer Practice

string *sPtr = NULL;
string s = "hello";
sPtr = &s;
*sPtr = "goodbye";
cout << s << endl;

• You can also use the dereferencing operator to set the value of the
"pointee" (the variable being pointed to):

sPtr

99
8761

s

goodbye

99

Output:
 goodbye

Pointer Practice

string *sPtr1 = NULL;
string *sPtr2 = NULL;
string s = "hello";
sPtr1 = &s;
cout << *sPtr1 << endl;

sPtr2 = sPtr1;
cout << *sPtr2 << endl;

• If you set one pointer equal to another pointer, they both point to the
same variable! sPtr1

0
8761

sPtr2

0
2232

NULL NULL

Pointer Practice

string *sPtr1 = NULL;
string *sPtr2 = NULL;
string s = "hello";
sPtr1 = &s;
cout << *sPtr1 << endl;

sPtr2 = sPtr1;
cout << *sPtr2 << endl;

• If you set one pointer equal to another pointer, they both point to the
same variable! sPtr1

0
8761

sPtr2

0
2232

NULL NULL

s

hello
99

Pointer Practice

string *sPtr1 = NULL;
string *sPtr2 = NULL;
string s = "hello";
sPtr1 = &s;
cout << *sPtr1 << endl;

sPtr2 = sPtr1;
cout << *sPtr2 << endl;

• If you set one pointer equal to another pointer, they both point to the
same variable! sPtr1

99
8761

sPtr2

0
2232

NULL

s

hello
99

Pointer Practice

string *sPtr1 = NULL;
string *sPtr2 = NULL;
string s = "hello";
sPtr1 = &s;
cout << *sPtr1 << endl;

sPtr2 = sPtr1;
cout << *sPtr2 << endl;

• If you set one pointer equal to another pointer, they both point to the
same variable! sPtr1

99
8761

sPtr2

0
2232

NULL

s

hello
99Output:

 hello

Pointer Practice

string *sPtr1 = NULL;
string *sPtr2 = NULL;
string s = "hello";
sPtr1 = &s;
cout << *sPtr1 << endl;

sPtr2 = sPtr1;
cout << *sPtr2 << endl;

• If you set one pointer equal to another pointer, they both point to the
same variable! sPtr1

99
8761

sPtr2

99
2232

s

hello
99

Pointer Practice

string *sPtr1 = NULL;
string *sPtr2 = NULL;
string s = "hello";
sPtr1 = &s;
cout << *sPtr1 << endl;

sPtr2 = sPtr1;
cout << *sPtr2 << endl;

• If you set one pointer equal to another pointer, they both point to the
same variable! sPtr1

99
8761

sPtr2

99
2232

s

hello
99Output:

 hello

Pointer Practice

string *sPtr1 = NULL;
string *sPtr2 = NULL;
string s = "hello";
sPtr1 = &s;
cout << *sPtr1 << endl;

sPtr2 = sPtr1;
cout << *sPtr2 << endl;

*sPtr1 = "goodbye";
cout << *sPtr1 << endl;
cout << *sPtr2 << endl;

• If you dereference and assign a different value, both
pointers will now print the same value! sPtr1

99
8761

sPtr2

99
2232

s

goodbye

99

Pointer Practice

string *sPtr1 = NULL;
string *sPtr2 = NULL;
string s = "hello";
sPtr1 = &s;
cout << *sPtr1 << endl;

sPtr2 = sPtr1;
cout << *sPtr2 << endl;

*sPtr1 = "goodbye";
cout << *sPtr1 << endl;
cout << *sPtr2 << endl;

• If you dereference and assign a different value, both
pointers will now print the same value! sPtr1

99
8761

sPtr2

99
2232

s

goodbye

99
Output:

 goodbye
 goodbye

Pointers

What is a pointer??

a memory address!

Pointers
More information about addresses:

Addresses are just numbers, as we have seen. However, you will
often see an address listed like this:

0x7fff3889b4b4
or this: 0x602a10

This is a base-16, or "hexadecimal" representation. The 0x just
means "the following number is in hexadecimal."

The letters are used because base 16 needs 16 digits:
 0 1 2 3 4 5 6 7 8 9 a b c d e f

Pointer Practice

• So, you might see the following
-- remember, we don't actually
care about the address values,
just that they are memory
locations.

sPtr1

0xfcab0

0xfe01a

sPtr2

0xfcab0

0xfe5c2

s

goodbye

0xfcab0

Binky

• Our very own Nick Parlante (another CS Lecturer) put this
video together many years ago:

Let's write our swap function with pointers!

Let's write our swap function with pointers!

void swap(int *a, int *b) {
 int temp = *a;
 *a = *b;
 *b = temp;
}

Back to Classes: the Copy Constructor

• Okay, now we know about classes and pointers. We will learn
about the "new" operator on Monday, but for now just know that it
gives us space to hold variables that doesn't get lost when a
function ends.

• Let's take a look at a simple Rectangle class (almost certainly not
the way we would really write this class)

width

height

Back to Classes: the Copy Constructor

#pragma once

class Rectangle {
public:
 Rectangle(double width = 1, double height = 1); // constructor
 ~Rectangle(); // destructor (more on this later)

 double area();
 double perimeter();
 double getHeight();
 double getWidth();

private:
 double *height; // pointer to a double
 double *width; // pointer to a double
};

rectangle.h:

Back to Classes: the Copy Constructor

#include "rectangle.h"

Rectangle::Rectangle(double width, double height) { // constructor
 this->width = new double;
 this->height = new double;
 *(this->width) = width;
 *(this->width) = height;
}

Rectangle::~Rectangle() { // destructor
 delete height;
 delete width;
}

double Rectangle::area() {
 return *width * *height;
}

double Rectangle::perimeter() {
 return 2 * *width + 2 * *height;
}

double Rectangle::getHeight() {
 return *height;
}

double Rectangle::getWidth() {
 return *width;
}

rectangle.cpp:

Back to Classes: the Copy Constructor

int main() {
 Rectangle r(3,4);
 cout << "Width: " << r.getWidth() << ", ";
 cout << "Height: " << r.getHeight() << endl;

 cout << "Area: " << r.area() << endl;
 cout << "Perimeter: " << r.perimeter() << endl;

 // let's make a copy:
 Rectangle r2 = r;

 return 0;
}

rectangle.cpp:

no problem...

crash!

What happened?
int main() {
 Rectangle r(3,4);
 Rectangle r2 = r;
}

width

0x99
0x61

3
0x99

height

0x9f
0x63

4
0x9f

r

The default is to copy the values...
int main() {
 Rectangle r(3,4);
 Rectangle r2 = r;
}

width

0x99
0x61

3
0x99

height

0x9f
0x63

4
0x9f

r

width

0x65
height

0x67

r2

The default is to copy the values...
int main() {
 Rectangle r(3,4);
 Rectangle r2 = r;
}

width

0x99
0x61

3
0x99

height

0x9f
0x63

4
0x9f

r

width

0x99
0x65

height

0x9f
0x67

r2

Problem! Now both r and r2 point to the same ints!
int main() {
 Rectangle r(3,4);
 Rectangle r2 = r;
}

width

0x99
0x61

3
0x99

height

0x9f
0x63

4
0x9f

r

width

0x99
0x65

height

0x9f
0x67

r2

What to do? Define a "copy constructor"

class Rectangle {
public:
 Rectangle(double height = 1, double width = 1); // constructor
 Rectangle(const Rectangle &src); // copy constructor

...

The copy constructor tells the compiler how to copy your class. It is
important to do this so you don't end up with the situation on the

previous slides.

Rectangle::Rectangle(const Rectangle &src) { // copy constructor
 width = new double; // request new memory
 height = new double;

 // copy the values
 *width = *src.width;
 *height = *src.height;
}

add declaration to rectangle.h

add to rectangle.cpp

Recap

• Pointers
• A pointer is just a memory address that refers to the address of another variable
• Pointers must point to a particular type (int *, char *, string *, etc.)
• To declare a pointer, use * (e.g., string *stPtr)
• To get the address of a variable to store in a pointer, use &
• To access the value pointed to by a pointer, use the *
• Watch out for NULL pointers!
• Two pointers can point to the same variable.

For Next Time

Dynamic Memory Allocation!
new

delete
arrays

assignment overload (similar in principle to
the copy constructor)

References and Advanced Reading

•References:
•More on C++ classes: https://www.tutorialspoint.com/cplusplus/cpp_classes_objects.htm
•C++ Pointers: https://www.tutorialspoint.com/cplusplus/cpp_pointers.htm

•Advanced Reading:
• Fun video on pointers: https://www.youtube.com/watch?v=B7lVHq-cgeU
• Hexadecimal numbers: http://www.binaryhexconverter.com/hex-to-decimal-converter
•Pointer arithmetic: https://www.tutorialspoint.com/cplusplus/cpp_pointer_arithmatic.htm
•More on pointers: https://www.ntu.edu.sg/home/ehchua/programming/cpp/
cp4_PointerReference.html

https://www.tutorialspoint.com/cplusplus/cpp_classes_objects.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointers.htm
https://www.youtube.com/watch?v=B7lVHq-cgeU
http://www.binaryhexconverter.com/hex-to-decimal-converter
https://www.tutorialspoint.com/cplusplus/cpp_pointer_arithmatic.htm
https://www.ntu.edu.sg/home/ehchua/programming/cpp/cp4_PointerReference.html
https://www.ntu.edu.sg/home/ehchua/programming/cpp/cp4_PointerReference.html
https://www.ntu.edu.sg/home/ehchua/programming/cpp/cp4_PointerReference.html

