CsS 1068

| ecture 14:
Polinters

Wednesday, May 3, 2017

Programming Abstractions
Spring 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:
Programming Abstractions in C++, Chapter 11

loday's lopics

®| OqQistics
e\Midterm tomorrow night.
oYou Will be able to take the exam on computer or on paper. Make sure your battery Is
charged!

e|ntroduction to Pointers
e\\Vhat are pointers”
ePointer Syntax
ePointer T1ps
ePointer Practice
oBinky

eBack to classes

® [he copy constructor anra-thre-assighrment-overnoad

C++ Challenge

- Challenge #1: Write a swap function:

? swap(?) A

}

int main() {
// swap the two variables below, using a swap function
int a = 5;
int b = 12;
swap (?);
// at this point, a should equal 12 and b should equal 5

C++ Challenge

- Can we write a swap function in C++ using what we know
already”? Yes, we can!

void swap(int &a, int &b) {
int temp = a;
a b;
b = temp;

¥

int main() {
// swap the two variables below, using a swap function
int a = 5;
int b = 12;
swap (a, b);
// at this point, a equals 12 and b equals 5

C++ Challenge

- S0 It turns out that references are a nice C++ feature, but they
abstract away some of the lower-level details that we might want

to know about.

INn order for our swap function to work, we must have access to
the original elements.

+T'his starts to fall under the category of "memory management’

- As a close relative to C, C++ gives us access to all of C's low-
level functionality.

INtroduction to Pointers

- The next major topic Is about the idea of a
pointer in C++. We need to use pointers
when we create data structures like
Vectors and Linked Lists (which we will do
next week!)

Pointers are used heavily in the C
language, and also in C++, though we
haven't needed them yet.

» Pointers delve under the hood of
C++ to the memory system, and so
we must start to become familiar
with how memory works In a
computer.

INtroduction to Pointers

- The memory in a computer can be thought of simply as a long row of boxes,
with each box having a value In it, and an index associated with It.

- |f this sounds like an array, it's because it is!
- Computer memory (particularly, Random Access Memory, or RAM) is just a giant

array. The "boxes" can hold different types, but the numbers associated with
each box Is Just a number, one after the other:

Yl 7 2 8 3 14 99 -6 3 45 11

assoclated index:

EIVESSASIGle)M cat dog apple tree shoe hand chair light cup toe

associated index: ' 19 11 12 13 | 14 | 15 | 16 | 17 | 18 | 19 »f”\\))

INtroduction to Pointers

In C++, we just call those boxes variables, and we call the associated indices

addresses, because they can tell us where the variable is located (like a house

address).
UEISH cat dog apple tree shoe hand chair light cup toe
address: | 10 11 12 13 | 14 | 15 | 16 | 17 | 18 | 19
. . | "

string pet = 'cat ;

What is the address of the pet variable” pet

1 0 Cat The address of the

The operating system determines the address, * et variable

not you! In this case it is 10, but it could be any 1 O A/ P

other address in memory.

INtroduction to Pointers

+ Guess what”? If we store that memory address in a different variable, it is called
a pointer.

string pet = "cat’; Some other variable:

pet petPointer

10 1234

S0, what is a pointer?

A memory address!

INtroduction to Pointers

What is a pointer?*

a memory address!

INtroduction to Pointers

- We really don't care about the actual memory address numbers themselves,
and most often we will simply use a visual "pointer" to show that a variable
points to another variable:

string pet = "cat"; petPointer variable

pet petPointer

cat M 10

10 1234

INtroduction to Pointers

- We really don't care about the actual memory address numbers themselves,
and most often we will simply use a visual "pointer" to show that a variable
points to another variable:

string pet = "cat"; pet_pointer variable

pet petPointer

cat

INtroduction to Pointers

What you need to know about pointers:

» Every location iIn memory, and therefore every variable, has an address.

» Every address corresponds to a unique location in memory.

» [he computer knows the address of every variable in your program.

» Given a memory address, the computer can find out what value is stored at
that location.

» While addresses are just numbers, C++ treats them as a separate type. This
allows the compiler to catch cases where you accidentally assign a pointer
to a numeric variable and vice versa (which is almost always an error).

Pointer Syntax

Pointer syntax can get tricky. We will not go too deep -- you'll get
that when you take ¢s107!

Pointer Syntax #1: To declare a pointer of a particular type, use the

"x" (asterisk) symbol:

string xpetPtr; // declare a pointer (which will hold a
// memory address) to a string

int *agePtr; // declare a pointer to an int

char xletterPtr; // declare a pointer to a char

The type for petPtris a "string *"andnota string. Thisis
important! A pointer type Is distinct from the pointee type.

Pointer Syntax

Pointer Syntax #2: To get the address of another variable, use the
'&" (ampersand) character:

Pointer Syntax

Pointer Syntax #2. To get the address of another variable, use the
'&" (ampersand) character:

string xpetPtr; // declare a pointer (which will hold a
// memory address) to a string

petPtr

- i

(dead squirrel!) 1934

Pointer Syntax

Pointer Syntax #2. To get the address of another variable, use the
'&" (ampersand) character:

string xpetPtr; // declare a pointer (which will hold a
// memory address) to a string
string pet = "cat"; // a string varilable

pet petPtr

- i

10 (dead squirrel!) 1934

Pointer Syntax

Pointer Syntax #2. To get the address of another variable, use the
'&" (ampersand) character:

string xpetPtr; // declare a pointer (which will hold a
// memory address) to a string
string pet = "cat"; // a string varilable

petPtr = &pet; // petPtr now holds the address of pet
pet petPtr

cat M 10

10 1234

Pointer Syntax

Pointer Syntax #2. To get the address of another variable, use the
'&" (ampersand) character:

string xpetPtr; // declare a pointer (which will hold a
// memory address) to a string
string pet = "cat"; // a string varilable

petPtr = &pet; // petPtr now holds the address of pet

you almost never need to do this in 10cB!!!

Pointer Syntax

Pointer Syntax #3: To get value of the variable a pointer points to,
use the "*" (asterisk) character (in a different way than before!):

string xpetPtr; // declare a pointer to a string
string pet = "cat"; // a string variable

petPtr = &pet; // petPtr now holds the address of pet
cout << xpetPtr << endl; // prints out "cat"

cat M 10
10 1234

This is called "dereferencing” the pointer: the asterisk says, "go to where
the pointer is pointing, and return the value stored there"

Pointer [1ps

Pointer Tip #1: 10 ensure that we can tell it a pointer has a valid
address or not, set your declared pointer to NULL, which means

"'no valid address” (it actually is just O In C++).

INnstead of this:

string xpetPtr; // declare a pointer to
// a string with a dead squirrel

petPtr

- i

(dead squirrel!) 1234

Pointer [1ps

Pointer Tip #1: 10 ensure that we can tell it a pointer has a valid
address or not, set your declared pointer to NULL, which means

"'no valid address” (it actually is just O In C++).

Do this:

string *petPtr = NULL; // declare a poilnter to
// a string that points to NULL

petPtr

(no valid address) 1934

Pointer [1ps

Pointer Tip #2: [f you are unsure If your pointer holds a valid
address, you should check for NULL

Do this:

void printPetName(string xpetPtr) {
if (petPtr !'= NULL) {
cout << xpetPtr << endl; // prints out the value

// pointed to by petPtr
// 1f it is not NULL

Pointer Practice

These little boxes we draw to show the memory are so, SO
important to understanding what is happening. Always draw Doxes
when learning pointers!

int xnPtr = NULL;

What type does this pointer point to*/
What should we draw?

Pointer Practice

These little boxes we draw to show the memory are so, SO
important to understanding what is happening. Always draw Doxes
when learning pointers!

int xnPtr = NULL;

What type does this pointer point to”? an int
What should we draw’/

Pointer Practice

These little boxes we draw to show the memory are so, SO
important to understanding what is happening. Always draw Doxes
when learning pointers!

int *xnPtr = NULL;

What type does this pointer point to”? an int
What should we draw® Ptr

i o

(224

Pointer Practice

These little boxes we draw to show the memory are so, SO
important to understanding what is happening. Always draw Doxes
when learning pointers!

int xnPtr = NULL;

What type does this pointer point to”? an int
What should we draw® Ptr

N o

We don't care what this number is,
(224

memory.

Pointer Practice

These little boxes we draw to show the memory are so, SO
important to understanding what is happening. Always draw Doxes
when learning pointers!

int xnPtr = NULL;
int n = 16;

What should we draw?

Pointer Practice

These little boxes we draw to show the memory are so, SO
important to understanding what is happening. Always draw Doxes
when learning pointers!

int xnPtr = NULL;
int n = 16;

nPtr

NULm

7224

Pointer Practice

These little boxes we draw to show the memory are so, SO
important to understanding what is happening. Always draw Doxes
when learning pointers!

int xnPtr = NULL:
int n = 16;
nPtr = &n: What should we draw and fill In/
nPtr

NULm

42

Pointer Practice

These little boxes we draw to show the memory are so, SO
important to understanding what is happening. Always draw Doxes
when learning pointers!

int xnPtr = NULL;
int n = 16;
nNPtr = &n;

nPtr

(224

We now say that nPtr points to n.

42

Polinters

What is a pointer?*

a memory address!

string *xsPtr = NULL,;
string s = "hello",;
sPtr = &s;

cout << *xsPtr << endl;

Pointer Practice

string *xsPtr = NULL,;
string s = "hello";
sPtr = &s;

cout << *xsPtr << endl;

S

99

Pointer Practice

sPtr

e o

8761

string xsPtr = NULL;
string s = "hello",;
sPtr = &s;

cout << *xsPtr << endl:

S

99

Pointer Practice

string xsPtr = NULL;
string s = "hello",;
SPtr = &s;

cout << xsPtr << endl;

S

99

Pointer Practice

Output:
hello

Pointer Practice

string xsPtr = NULL; Qutput?
string s = "hello",;
cout << *xsPtr << endl;

Pointer Practice

string *xsPtr = NULL; Output? Seg Fault! (crash!)
string s = "hello",;

cout << *sPtr << endl:

O O Console

koK
%% STANFORD C++ LIBRARY

*kk A segmentation fault occurred during program execution.

%k This typically happens when you try to dereference a pointer
% that 1s NULL or invalaid.

*okok
%k Stack trace (line numbers are approximate):
sk Ox107f14086 main()

KK

Pointer Practice

string *xsPtr = NULL; Output? Seg Fault! (crash!)
string s = "hello",; - -

cout << *sPtr << endl; -

koK
%% STANFORD C++ LIBRARY

*kk A segmentation fault occurred during program execution.

%k This typically happens when you try to dereference a pointer
% that 1s NULL or invalaid.

%k Stack trace (line numbers are approximate):
sk Ox107f14086 main()

sPtr

hello

8707

99

Be careful when dereferencing pointers!

Pointer Practice

* You can also use the dereferencing operator to set the value of the
"pointee” (the variable being pointed 1o):

string *xsPtr = NULL,;
string s = "hello",;
sPtr = &s;

*sPtr = "goodbye";
cout << s << endl;

Pointer Practice

* You can also use the dereferencing operator to set the value of the
"pointee” (the variable being pointed 1o):

string *xsPtr = NULL,;
string s = "hello",;
sPtr = &s;

*sPtr = "goodbye";
cout << s << endl;

Pointer Practice

* You can also use the dereferencing operator to set the value of the
"pointee” (the variable being pointed 1o):

string *xsPtr = NULL;
string s = "hello";
sPtr = &s;

*sPtr = "goodbye";
cout << s << endl;

S

99

Pointer Practice

* You can also use the dereferencing operator to set the value of the
"pointee” (the variable being pointed 1o):

string *xsPtr = NULL,;
string s = "hello",;
sPtr = &s;

*sPtr = "goodbye";
cout << s << endl;

S

99

Pointer Practice

* You can also use the dereferencing operator to set the value of the
"pointee” (the variable being pointed 1o):

string *xsPtr = NULL,;
string s = "hello",;
sPtr = &s;

*SsPtr = "goodbye";
cout << s << endl;

S

goodbye

99

Pointer Practice

* You can also use the dereferencing operator to set the value of the
"pointee” (the variable being pointed 1o):

string *xsPtr = NULL,;
string s = "hello",; _
sPtr = &s; OUtpUt-

*sPtr = "goodbye"; goodbye
cout << s << endl;

S

goodbye

99

Pointer Practice

* |f you set one pointer equal to another pointer, they both point to the

same variable!

string *sPtrl = NULL,;
string *xsPtr2 = NULL;
string s = "hello",

sPtrl = &s;

cout << *sPtrl << endl:

sPtr2 = sPtrl;

cout << xsPtr2 << endl;

sPtr

8707

sPtr2

2232

Pointer Practice

* |f you set one pointer equal to another pointer, they both point to the

same variable!

string *xsPtrl = NULL,;
string *sPtr2 = NULL;
string s = "hello",

sPtrl = &s;

cout << *sPtrl << endl:

sPtr2 = sPtrl;

cout << xsPtr2 << endl;

sPtr

8707

sPtr2

2232

Pointer Practice

* |f you set one pointer equal to another pointer, they both point to the

same variable!

string *xsPtrl = NULL,;
string *xsPtr2 = NULL;
string s = "hello",

sPtrl = &s;

cout << *sPtrl << endl:

sPtr2 = sPtrl;

cout << xsPtr2 << endl;

sPtr

8707

sPtr2

2232

Pointer Practice

* |f you set one pointer equal to another pointer, they both point to the

same variable!

string *xsPtrl = NULL,;
string *xsPtr2 = NULL;
string s = "hello",

sPtrl = &s;

cout << xsPtrl << endl:

sPtr2 = sPtrl;

cout << xsPtr2 << endl;

Output:
hello

sPtr

8707

sPtr2

2232

Pointer Practice

* |f you set one pointer equal to another pointer, they both point to the
sPtr

same variable!

string xsPtrl = NULL;
string *xsPtr2 = NULL;
string s = "hello",
sPtrl = &s;

cout << *sPtrl << endl:

sPtr2 = sPtrl;

cout << *sPtr2 << endl;

99
8761

sPtr2

99

2232

Pointer Practice

* |f you set one pointer equal to another pointer, they both point to the

same variable!

string *xsPtrl = NULL,;
string *xsPtr2 = NULL;
string s = "hello",

sPtrl = &s;

cout << *sPtrl << endl:

sPtr2 = sPtril;

cout << *sPtr2 << endl;

Output:
hello

sPtr

99
8761

S

99

sPtr2

99

2232

Pointer Practice

* |f you dereference and assign a different value, both

pointers will now print the same value!

string *xsPtrl = NULL,;
string *xsPtr2 = NULL;
string s = "hello",

sPtrl = &s;

cout << *sPtrl << endl:

sPtr2 = sPtrl;

cout << xsPtr2 << endl;

*sPtrl = "goodbye";

cout << *sPtrl << endl:
cout << *sPtr2 << endl;

sPtr

99
8761

sPtr2

2232

Pointer Practice

* |f you dereference and assign a different value, both

pointers will now print the same value! spir SPtr2
string *xsPtrl = NULL,; S)S)
string *xsPtr2 = NULL;
string s = "hello",
SPtrl = &s; 87601 2232

cout << *sPtrl << endl:

sPtr2 = sPtrl;
cout << xsPtr2 << endl;

*SsPtrl = "goodbye";
cout << xsPtrl << endl:
cout << *sPtr2 << endl;

Polinters

What is a pointer?*

a memory address!

Polinters

More Information about addresses:

Addresses are just numbers, as we have seen. However, you will
often see an address listed like this:

O0x7f£££3889b4db4
or this: 0x602al0

This is a base-16, or "hexadecimal" representation. The 0x just
means "the following number is In hexadecimal.”

The letters are used because base 16 needs 16 digits:
01 23456789 abcdetHt

Pointer Practice

sPtr sPtr2

Oxfcabl Oxfcab0

* S0, you might see the following
-- remember, we don't actually
care about the address values,
just that they are memory
locations.

OxfeO1a Oxfe5c2

S

goodbye

OxfcabO

Binky

» Our very own Nick Parlante (another CS Lecturer) put this
video together many years ago:

T

Pointe.r Fun with ..
| n k |

by Nick Parlante
This is document 104 in the Stanford CS

Education Library — please see
cslibrary.stanford.edu

for this video, its associated documents,
and other free educational materials.

Copyright © 1999 Nick Parlante. See copyright
panel for redistribution terms.
Carpe Post Meridiem!

| et's write our swap function with pointers!

| et's write our swap function with pointers!

void swap(int *a, int xb) {
int temp = *a;
*a = *xDb;
b = temp;

height

Rectangle.

» Okay, now we know about classes and pointers. \We will learn
about the "new" operator on Monday, but for now just know that it
gives us space to hold variables that doesn't get lost when a

function ends.

» Let's take a look at a simple Rectangle class (almost certainly not
the way we would really write this class)

Back to Classes: the Copy Constructor

rectangle.n:

#pragma once

class Rectangle {

public:
Rectangle(double width = 1, double height = 1); // constructor
~Rectangle(); // destructor (more on this later)

double area():

double perimeter();
double getHeight();
double getWidth();

private:
double xheight; // pointer to a double
double xwidth; // pointer to a double

b

Back to Classes: the Copy Constructor

rectangle.cpp:

#include "rectangle.h”

Rectangle::Rectangle(double width, double height) { // constructor
this—>width = new double;
this—>height = new double;
*(this—>width) width;
x(this—>width) = height;

}

Rectangle::~Rectangle() { // destructor
delete height;
delete width;

}

double Rectangle::area() {
return sxwidth *x xheight;
}

double Rectangle::perimeter() {
return 2 x xwidth + 2 x xheight,
I3

double Rectangle::getHeight() {
return *xheight;
I3

double Rectangle::getWidth() {
return *xwidth;
}

Back to Classes: the Copy Constructor

rectangle.cpp:

int main() A
Rectangle r(3,4);
cout << "Width: " << r.getWidth() << ", ";
cout << "Height: " << r.getHeight() << endl;

cout << "Area: " << r.area() << endl;

cout << "Perimeter: " << r.perimeter() << endl;
// let's make a copy:

Rectangle r2 = r;] CraSh!

return 0;

Nno problem...

What happened”?

int main() {
Rectangle r(3,4);
Rectangle r2 = r,

(B
Ox061 0x99

| —

0x63 0x9f

1 he default Is to copy the values...

int main() A
Rectangle r(3,4);
Rectangle r2 = r;

[-
0OX061 0x99 0Xx65
height height

Oxo67

| —

0Xx63 OxOf

1 he default Is to copy the values...

int main() A
Rectangle r(3,4);
Rectangle r2 = r;

Ny
N

"“- s
Ox61 i

Problem! Now both r and r2 point to the same ints!

int main() {
Rectangle r(3,4);
Rectangle r2 = r,;

width width

oo - -

0OX061 0x99 0Xx65

height height

Ox9f § R

Oxo67

0x63 0x9f

What to do”? Define a "copy constructor®

The copy constructor tells the compiler how to copy your class. It Is

important to do this so you don't end up with the situation on the
previous slides.

class Rectangle { add declaration to rectangle.h
public:

Rectangle(double height = 1, double width = 1); // constructor
Rectangle(const Rectangle &src); // copy constructor

Rectangle::Rectangle(const Rectangle &src) { // copy constructor
width = new double; // request new memory
height new double;

add to rectangle.cpp
// copy the values

xwidth = ksrc.width:
xheight = xsrc.height;

Pointers
A pointer is jJust a memory address that refers to the address of another variable

Pointers must point to a particular type (int *, char *, string *, etc.)
To declare a pointer, use * (e.g., string *stPtr)

1o get the address of a variable to store in a pointer, use &

Jo access the value pointed to by a pointer, use the ~

Watch out for NULL pointers!
Iwo pointers can point to the same variable.

~or Next 1ime

Dynamic Memory Allocation!

New
delete
arrays
assignment overload (similar in principle to
the copy constructor)

References and Advanced Reading

* References:
e\More on C++ classes: https://www.tutorialspoint.com/cplusplus/cpp classes objects.htm
eC++ Pointers: https://www.tutorialspoint.com/cplusplus/cpp_pointers.htm

- Advanced Reading:

e Fun video on pointers: https://www.youtube.com/watch?v=B7IVHqg-cgel.
e Hexadecimal numbers: http://www.binaryhexconverter.com/hex-to-decimal-converter
ePointer arithmetic: https://www.tutorialspoint.com/cplusplus/cpp pointer arithmatic.htm
e\ore on pointers: https://www.ntu.edu.sg/home/ehchua/programming/cpp/

cp4 PointerReference.html

https://www.tutorialspoint.com/cplusplus/cpp_classes_objects.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointers.htm
https://www.youtube.com/watch?v=B7lVHq-cgeU
http://www.binaryhexconverter.com/hex-to-decimal-converter
https://www.tutorialspoint.com/cplusplus/cpp_pointer_arithmatic.htm
https://www.ntu.edu.sg/home/ehchua/programming/cpp/cp4_PointerReference.html
https://www.ntu.edu.sg/home/ehchua/programming/cpp/cp4_PointerReference.html
https://www.ntu.edu.sg/home/ehchua/programming/cpp/cp4_PointerReference.html

