
Wednesday, April 19, 2017

Programming Abstractions

Spring 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapter 5.4-5.6

CS 106B
Lecture 8: Fractals

Today's Topics
• Logistics:

• ADTs Due Thursday April 20th, noon
• Towers of Hanoi video featuring Keith Schwartz: https://www.youtube.com/

watch?v=2SUvWfNJSsM

• Tiny Feedback
• Assignment 3: Recursion

• Fractals
• Grammar Solver

• A more detailed recursion example
• Fractals

Tiny Feedback
• Could you please upload the .ppt of the classes and not only the .pdf?

• We've already been doing this! See the Lectures drop-down on the course web
page:

Assignment 3: Recursion

(1) Fractals and Graphics
(2) Grammar Solver

Assignment 3A: Fractals and Graphics

part 1

Sierpinski

part 2

tre
e fra

ctal
part 3

mandelbrot

Assignment 3B: Grammar Solver

write a function for generating random
sentences from a grammar.

example describing a small subset of the English language. Non-
terminal names such as <s>, <np> and <tv> are short for linguistic
elements such as sentences, noun phrases, and transitive verbs:

<s>::=<np>	<vp>	
<np>::=<dp>	<adjp>	<n>|<pn>	
<dp>::=the|a	
<adjp>::=<adj>|<adj>	<adjp>	
<adj>::=big|fat|green|wonderful|faulty|subliminal|pretentious	
<n>::=dog|cat|man|university|father|mother|child|television	
<pn>::=John|Jane|Sally|Spot|Fred|Elmo	
<vp>::=<tv>	<np>|<iv>	
<tv>::=hit|honored|kissed|helped	
<iv>::=died|collapsed|laughed|wept

Three Musts of Recursion

1. Your code must have a case for all valid inputs

2. You must have a base case that makes no
recursive calls

3. When you make a recursive call it should be to a
simpler instance and make forward progress

towards the base case.

Recursion Example

Recursion Example

((1*17)+(2*(3+(4*9))))

95

Challenge

"((1+3)*(2*(4+1)))"

Implement a function which evaluates an expression string:

"(7+6)"

"(((4*(1+2))+6)*7)"

(only needs to implement * or +)

Anatomy of an Expression
An expression is always one of these three things

number

expression (expression + expression)

 (expression * expression)

Anatomy of an Expression

((1*3)+(4*2)

left expression

joining operator

right expression

Anatomy of an Expression

((1*3)+(4*2)

left expression

joining operator

right expression

left exp right expop

Anatomy of an Expression

((1 * 17) + (2 * (3 + (4 * 9))))

How do we evaluate ((1*17)+(2*(3+(4*9))))?

(1 * 17) (2 * (3 + (4 * 9)))

1 17 2 (3 + (4 * 9))

3 (4 * 9)

4 9

17 78

39
36

95

Is it Recursive? Yes!

((1*3)+(4+2))

The big instance of this problem is:

((1*3)+(4+2))

The smaller instances are:

(1*3) (4+2)and

Task
Write this function:

"((1*3)+(4+2))" // returns 9

Using these library
functions:

int evaluate(string exp);

stringIsInteger(exp)
stringToInteger(exp)

And these exp
helper functions:

//returns ‘+’
char op = getOperator(exp);
//returns “(1*3)”
string left = getLeftExp(exp);
//returns “(4+2)”
string right = getRightExp(exp);

Solution (Pseudocode)
"((1*3)+(4+2))"

int evaluate(expression):

• if expression is a number, return expression
• Otherwise, break up expression by its operator:
•leftResult = evaluate(leftExpression)
•rightResult = evaluate(rightExpression)
•return leftResult operator rightResult

Solution

exp = "((1*3)+(4*5)+2)"int evaluate(string exp) {
 if (stringIsInteger(exp)) {
 return stringToInteger(exp);
 } else {
 char op = getOperator(exp);
 string left = getLeftExp(exp);
 string right = getRightExp(exp);
 int leftResult = evaluate(left);
 int rightResult = evaluate(right);
 if (op == '+') {
 return leftResult + rightResult;
 } else if (op == '*') {
 return leftResult * rightResult;
 }
 }
}

op = '+'

left = "(1*3)"

right = "((4*5)+2)"

leftResult = 3

rightResult = 22

Helper Methods

int getOppIndex(string exp){
 int parens = 0;
 // ignore first left paren
 for (int i = 1; i < exp.length(); i++) {
 char c = exp[i];
 if (c == '(') {
 parens++;
 } else if (c == ')') {
 parens--;
 }
 if (parens == 0 && (c == '+' || c == '*')) {
 return i;
 }
 }
}

Here is the key function behind the helper methods:

By the way...

We could also have solved this with a stack!

Today

Recursion you can see

Fractal

fractal: A recurring graphical pattern. Smaller
instances of the same shape or pattern occur
within the pattern itself.

Fractal
Many natural phenomena generate
fractal patterns:
1. earthquake fault lines
2. animal color patterns
3. clouds
4. mountain ranges
5. snowflakes
6. crystals
7. DNA
8. ...

The Cantor Fractal

Cantor Fractal

Parts of a cantor set image ... are Cantor set images

Cantor Fractal

Start End

Another cantor set Also a cantor set

Levels of Cantor

6 levels

Levels of Cantor

5 levels

Levels of Cantor

1 level

How to Draw a Level 1 Cantor

How to Draw a Level n Cantor

1 Draw a line from start to finish.

2 Draw a Cantor of size n-1 2 Draw a Cantor of size n-1

Graphics in C++ with the Stanford Libs: GPoint

x=0
y=0

GWindow w;
GPoint a(100, 100);
cout << a.getX() << endl;GPoint a

Graphics in C++ with the Stanford Libs: GPoint

x=0
y=0

GWindow w;
GPoint a(100, 100);
GPoint b(20, 20);
w.drawLine(a, b);

GPoint a

GPoint b

Cantor Fractal

Snoflake Fractal

Snowflake Fractal

Depth 1 Snowflake Line

Depth 2 Snowflake Line

Depth 3 Snowflake Line (in progress)

Depth 3 Snowflake Line (in progress)

Depth 3 Snowflake Line (in progress)

Depth 3 Snowflake Line (in progress)

Another Example On the Website

Recap

•Fractals
•Fractals are self-referential, and that makes for nice recursion problems!
•Break the problem into a smaller, self-similar part, and don't forget your base case!

References and Advanced Reading

• References:
• http://www.cs.utah.edu/~germain/PPS/Topics/recursion.html
• Why is iteration generally better than recursion? http://stackoverflow.com/a/

3093/561677

• Advanced Reading:

• Tail recursion: http://stackoverflow.com/questions/33923/what-is-tail-recursion

• Interesting story on the history of recursion in programming languages: http://
goo.gl/P6Einb

Extra Slides

