CS106B
Summer 2017

Chris Gregg

Section Handout #1

This week’s section handout has practice with Grids, Vectors, file reading, as well as review of Big-Oh Notation.

1. Mirror (CodeStepByStep)

Write a function mirror that accepts a reference to a grid of integers as a parameter and flips the grid along its
diagonal, so that each index [1][j] contains what was previously at index [j][i] in the grid. You may assume
the grid is square, that is, it has the same number of rows as columns. For example, the grid below at left would be
altered to give it the new grid state at right:

{{ 6: 1) 9; 4}) {{6, '2: 14) 21})
{_2) 5) 8) 12}) N {1J 5} 39) 55})
{14, 39, -6, 18}, {9, 8, -6, 73},
{21, 55, 73, -3}} {4, 12, 18, -3}}

2. Rotate Clockwise (CodeStepByStep)

Write a function rotateClockwise90Degrees that accepts a reference to a grid of integers as a parameter and
rotates the Grid 90 degrees clockwise. You may assume the grid is square, that is, it has the same number of rows
as columns. For example, the grid below at the left would be altered to give it the new grid state at right.

{{ 6, 1, 9) 4}) {{21) 14, '2) 6})
{_2) 5, 8, 12}) > {55) 39, 5, 1})
{14, 39, -6, 18}, {73, -6, 8, 9},
{21, 55, 73, -3}} {-3, 18, 12, 4}}

3. Stretch (CodeStepByStep)

Write a function named stretch that accepts a reference to a vector of integers as a parameter and modifies it to be
twice as large, replacing every integer with a pair of integers, each half the original. If a number in the original
vector is odd, then the first number in the new pair should be one higher than the second so that the sum equals
the original number. For example, passing the vectior {18, 7, 4, 24, 11} should modify the vector to
contain {9, 9, 4, 3, 2, 2, 12, 12, 6, 5}.

4. Big-Oh Analysis

Give a tight bound on the nearest runtime complexity for each of the following code fragments in Big-Oh, in
terms of the variable N. In other words, find the growth rate of the code’s runtime as N grows. Do not worry if you
are unfamiliar with some of the data structures presented in this problem. We’ll learn about them soon enough!

// a)

int sum = 9;

for (int i
sum++;

}

for (int j
sum += 5;

}

cout << sum << endl;

1; i <= N+ 2; i++) {

15 3 <= N * 25 344) {

Thanks to Aaron Broder, Marty Stepp, Victoria Kirst, Jerry Cain, and other past CS106B and X instructors and

TAs for contributing problems on this handout.

// b)
int sum = 0;

for (int i = 1; i <= N - 5; i++) {

for (int j
sum++;
}
}

1, J <=N=-553+=2){

cout << sum << endl;



// c) // d)
int sum = N; HashSet<int> setl;

3
for (int i = 9; i < 1000000; i++) { for (int i = 1; i <= N; i++) {

for (int j = 1; j <= 1; j++) { setl.add(i);

sum += N; }
}
for (int j = 1; j <= 1i; j++) { Set<int> set2;

sum += N; for (int i = 1; i <= N; i++) {
} setl.remove(i);
for (int j = 1; j <= 1i; j++) { set2.add(i + N);

sum += N; }
} cout << “done!” << endl;

}

cout << sum << endl;

5. Oh? More Big-Oh?
Give a tight bound on the nearest runtime complexity for each of the following code fragments in Big-Oh, in
terms of the variable N. In other words, find the growth rate of the code’s runtime as N grows.

// a) // b)
int sum = 0; int sum = 0;
for (int i = 1; i <= N - 2; i++) { for (int i = 1; i <= N * 2; i++) {
for (int j = 1; j <=1 + 4; j++) { for (int j =1; j<=1/ 2; j += 2) {
sum++; for (int k = @; k < N * N; k++) {
} sum++;
sum++; }
} }
cout << sum << endl; }

cout << sum << endl;

// ¢c) // d)

Vector<int> list; int sum = 0;

for (int 1 = 9; i < N; i++) { for (int i = 1; i <= 100000; i++) {
list.insert(0, i * i); for (int j = 1; j <= 1i; j++) {

} for (int k = 1; k <= N; k++) {

Set<int> set; sum++;

for (int k : list) { }
set.add(k); }

} }

cout << “done!” << endl; cout << sum << endl;

6. Keith Numbers (CodeStepByStep)

A Keith Number is defined as any n-digit integer that appears in the sequence that starts off with the number’s n
digits and then continues such that each subsequent number is the sum of the preceding n. All one-digit numbers
are trivially Keith numbers, but there are more interesting ones as well. For example, the number 7385 is a Keith
number because of the following sequence:

7,3.8,5,23,39,75, 142,279, 535, 1031, 1987, 3832, 7385

Keith numbers are computationally hard to calculate; there are only about 100 known right now. Write a function
findKeithNumbers that takes a minimum and maximum value and finds all Keith numbers between those
values (inclusive). For each number, it should print the sequence that proves it is a Keith number. For example, if
you call findKeithNumbers (1, 1000), it should print:



{1}
{2}
13}
{4}
{5}
16}
17}
18}
19}
14: {1,
19: {1,
28: {2,
47: {4,

OVCoOoONOTUVTE WNER

5, 9, 14}

10, 19}

, 10, 18, 28}

, 11, 18, 29, 47}

61: {6, 1, 7, 8, 15, 23, 38, 61}

75: {7, 5, 12, 17, 29, 46, 75}

197: {1, 9, 7, 17, 33, 57, 107, 197}

742: {7, 4, 2, 13, 19, 34, 66, 119, 219, 404, 742}

>

-

(S N CRR Vo I 2N

7. Average in File. (file input/output)

Write a function named averageValuelnFile that reads a file and returns the average (mean) of the numbers in
that file. The parameter, filename, gives the name of a file that contains a list of real numbers, one per line. You
may assume that the file exists and follows the proper format.

double averageValueInFile(string filename) { . . . }



