CS106B Chris Gregg
Summer 2017

Section Handout #5 Solutions

If you have any questions about the solutions to the problems in this handout, feel free to reach out to
your section leader, Jason, or Chris for more information.

1. A Series of Unfortunate References
1 -84 2
2. Section Leaders, Then and Now

Below is the state of memory just prior to the call to tyler:

stack heap

chris[e] chris[1] 9199

o

wesley

Below is the state of memory just before the call to tyler exits:

stack heap

5

[] [ ]
[] []
L] L]

,im H

/

chris(@) c rL;fTT_‘——-___

wesley

anupana aaron



3. What’s the Code Do?

list_y) 4 > 3 list > 1 S 2
2 3

4. What’s the Code?
// a) // b)
ListNode *temp = list->next->next; list->next->next->next = list;
temp->next = list->next; list = list->next->next;
list->next->next = list; ListNode *1list2 = list->next->next;
list->next->next->next = NULL; list->next->next = NULL;
list = temp;

5. Is Sorted
bool isSorted(ListNode *front) {
if (front != NULL) {
ListNode* current = front;
while (current->next != NULL) {
if (current->data > current->next->data) {
return false;
}
current = current->next;
}
}

return true;

}

6. Count Duplicate Strings
int countDuplicateStrings(StringNode *front) {
int count = ©;
if (front != NULL) {
StringNode *current = front;
while (current->next != NULL) {
if (current->data ==current->next->data) {
count++;
}
current = current->next;
}
}

return count;

}



7. Remove All Threshold
void removeAllThreshold(DoubleNode *&front, dou
while (front != NULL && front->data >= value
&& front->data <= val
DoubleNode *trash = front;
front = front->next;
delete trash;
}
if (front != NULL) {
DoubleNode *current = front;
while (current->next != NULL) {
if (current->next->data >= value - thresh
&& current->next->data <= value + thresh
DoubleNode *trash = current->next;
current->next = current->next->next;
delete trash;
} else {
current = current->next;
}
}
}
}

8. Double List
void doubleList(ListNode *&front) {
if (front != NULL) {
ListNode *half2 = new ListNode(front->data)
ListNode *back = half2;
ListNode *current = front;
while (current->next != NULL) {
current = current->next;
back->next = new ListNode(current->data);
back = back->next;

}

current->next = half2;

9. Split

ble value, double threshold) {
- threshold
ue + threshold) {

old
old) {

)

void split(ListNode *&front) {
if (front != NULL) {
ListNode *current = front;
while (current->next != NULL) {
if (current->next->data < 0) {
ListNode *temp = current->next;
current->next = current->next->next;
temp->next = front;
front = temp;
} else {
current = current->next;

void split(ListNode *&front) {
if (front != NULL) {
ListNode *current = front;
ListNode *lastNegative = NULL;
while (current->next != NULL) {
if (current->next->data < 0) {
ListNode *temp = current->next;
current->next = current->next->next;
if (lastNegative == NULL) {
lastNegative = temp;
lastNegative->next = front;
front = lastNegative;
} else {
temp->next = lastNegative->next;
lastNegative->next = temp;
lastNegative = temp;




} else {
current = current->next;
}
}
}
}

The original solution is on the left, but our amazing SL Norah pointed out that the negative numbers
would be printed in reverse instead of the original order. Can you verify if that is true and see why? On
the right is an alternate solution which does keep the original order. It keeps track of the last negative
number added instead of adding negative numbers to the front of the list. There may be a more elegant
solution, and if you find it please let me know! ©

10. Reverse Recurse
ListNode *reverse(ListNode *front) {
if (front == NULL) return NULL;
if (front->next == NULL) return front;

ListNode *rest = reverse(front->next); // reverse the whole list but the front

front->next->next = front; // update the next pointer of the 2nd element (now
// the second to last element) to point to front
front->next = NULL; // update the next pointer of front (now the

// end of the list) to be NULL

return rest;

11. Merge
Provided are two solutions for merging lists. The first one is recursive, and the second one is iterative.

ListNode *mergeLists(ListNode *one, ListNode *two) { ListNode *mergeLists(ListNode *one, ListNode *two) {
if (one == NULL) return two; ListNode *merge = NULL;
if (two == NULL) return one; ListNode **mergePtr = &merge;
// got this far? then neither list is empty while (one != NULL && two != NULL) {
if (one->data <= two->data) { if (one->data <= two->data) {
one->next = mergelLists(one->next, two); *mergePtr = one;
return one; one = one->next;
} else { } else {
two->next = mergelLists(one, two->next); *mergePtr = two;
return two; two = two->next;
} ¥
} mergePtr = &((*mergePtr)->next);
}

if (one != NULL) *mergePtr = one;
else *mergePtr = two;
return merge;

Why might you preference one solution over the other? The recursive solution is a bit shorter, and
depending on how comfortable you are with recursion versus advanced pointer techniques like double
pointers, it might be easier to understand. However, the structure of this problem means you’ll make a
recursive call for every element in the finished list, which means you could end up with too many stack
frames. Oftentimes, when you’re doing “tail recursion” (when you make a single recursive call, at the
very end of the function), it might actually be better to write an iterative solution, even if it’s more
complicated.




Note that some programming environments are able to optimize for tail recursion, meaning it’s less of a

performance hit to use it.

12. Draw Polygonal Path

void drawPolygonalPath(GWindow &window, PointNode *head) {

if (head == NULL) {
return;

}

PointNode *current = head;

window.fillOval(current->x - 1, current->y - 1, 2, 2);

while (current->next != NULL) {

window.drawLine(current->x, current->y, current->next->x, current->next->y);
window.fillOval(current->next->x - 1, current->next->y - 1, 2, 2);

current = current->next;
if (current == head) {
break;
}
}
}

13. Braiding Lists

Provided are two solutions for braiding lists. The first one is iterative, and the second one is recursive.

void braid(ListNode *1list) {
ListNode *reverse = NULL;
for (ListNode *curr = list;
curr != NULL; curr = curr->next) {

ListNode *newNode = new ListNode;
newNode->data = curr->data;
newNode->next = reverse;
reverse = newNode;

}

// reverse now addresses a memory-independent
//version of the original list,
// where all of the nodes are in reverse order.
ListNode *rest = reverse; //rest addresses part
//that has yet to be braided
for (ListNode *curr = list;
curr != NULL; curr = curr->next->next) {

ListNode *next = rest->next;

rest->next = curr->next;

curr->next = rest;

rest = next;

void braid(ListNode *1ist, Queue<int> &numbers) {
if (list == NULL) return;
numbers.enqueue(list->value);
braid(list->next, numbers);
ListNode *newNode = new ListNode;
newNode->data = numbers.dequeue();
newNode->next = list->next;
list->next = newNode;

}

void braid(ListNode *1list) {
Queue<int> numbers;
braid(list, numbers);

}

Some of the same considerations apply when choosing between these two solutions as with merging
lists. Note that this isn’t actually tail recursion, however, it’s still “unary recursion” (a single recursive
call). Oftentimes problems solved using unary recursion have similarly complex iterative solutions.



