
Thanks to Anton Apostolatos, Aaron Broder, Marty Stepp, Victoria Kirst, Jerry Cain, and other past CS106
instructors / TAs for contributing content on this handout.

CS106B Chris Gregg
Summer 2017

Section Handout #6
This week has practice with trees. When working on your solutions, remember that you must not leak memory.
Assume the following structures been declared:

TreeNode CharNode StringNode
struct TreeNode {
 int data;
 TreeNode *left;
 TreeNode *right;
};

struct CharNode {
 char ch;
 CharNode *left;
 CharNode *right;
};

struct StringNode {
 string str;
 StringNode *left;
 StringNode *right;
};

You can also assume that there is a helper function, deleteTree, that takes in the pointer to a tree and frees all
the memory associated with that tree.

Lastly, note that I will be marking problems with their difficulty from easy -> medium -> hard.

1. No, You're Out of Order
Write the elements of each tree below in the order they would be seen by a pre-order, in-order, and post-order
traversal.

3
/ \

5 2
/ / \

1 4 6

19
/ \

47 63
/ \ \

23 -‐2 94
 / \

 55 28

2
 \
 1

 / \
 7 6
 / \
 4 9
/ \ /

 3 5 8 _
2. Height
Write a function that takes in the root of a tree of integers and returns the height of the tree. The height of a tree is
defined to be the number of nodes along the longest path from the root to a leaf. An empty tree is defined to have
height 0.

3. Count Left Nodes
Write a function that takes in the root of a tree of integers and returns the number of left children in the tree. A left
child is a node that appears as the root of a left-hand subtree of another node. For example, the tree in problem
1(a) has 3 left children (the nodes containing 5, 1, and 4).

4. Balanced
Write a function that takes in the root of a tree of integers and returns whether or not the tree is balanced. A tree is
balanced if its left and right subtrees are balanced trees whose heights differ by at most 1. The empty tree is
defined to be balanced. You may call solutions to other section handouts to help you.

5. Prune a Tree
Write a function that takes in the root of a tree of integers and removes the tree's leaf nodes. Recall that a leaf is a
node that has empty left and right subtrees. If your function is called on an empty tree, it should not change the
tree. You must free the memory for any removed nodes.

6. Complete to Level
Write a function that takes in the root of a tree of strings and an integer k and adds nodes with the value "??" to
the tree so that the first k levels are complete. A level is defined to be complete if every possible node at that level
is non-null. The root is defined to be level 1, its children are defined to be level 2, and so on. Preserve any existing
nodes on the tree. You should throw an integer exception if passed a value for k that is less than 1.

Before call to completeToLevel(root, 3) After call

"Chris"
/ \

 "Anu" "Wesley"
/ \

"Aaron" "Jason"
\ /

"Colin" "Leslie"

"Chris"
/ \

 "Anu" "Wesley"
/ \ / \

"Aaron" "??" "??" "Jason"
\ /

"Colin" "Leslie"

7. Word Trees
Write a function that takes in the root of a tree of characters and a string and returns whether or not that particular
string can be found along any path from the root to the leaves of a given tree. For example, suppose you are given
the following tree:

c
/ \

r z
/ \ / \

a u a e
/ \ / \ \ / \

b n g s r r d
 / \ \
 h t o

Your function would return true for "crab", "ran", "rug", "crust", "rust", "us", "ugh", "czar",
"zero", and "zed". In particular, note that "rug" and "us" are completely internal – they neither start at the
root nor end in the leaf nodes. You might also notice that the word "arc" exists in the tree, but your function
shouldn't return true as it's going the wrong way along the path. Use backtracking recursion to prune the search
space.

8. List to Tree
Write a function that takes in a singly-linked list of numbers and returns the root to a complete binary tree where
the nth item of the singly-linked list occupies all positions at the nth level of the binary tree structure. For
example, suppose you are given the following linked list:

4 -‐> 1 -‐> 9 -‐> 3

You should return the following binary tree:

4
/ \

1 1
/ \ / \

 9 9 9 9
 / \ / \ / \ / \
 3 3 3 3 3 3 3 3

You can assume that you have the ListNode from last week's section handout. As a refresher, that structure was
defined as follows:

struct ListNode {
 int data;
 ListNode *next;
}

9. Binary Search Tree Insertion
Draw the binary search tree that would result from inserting the following elements in the given order. Remember
that strings will be stored in lexicographic order.

a. Jaques, Sunny, Klaus, Violet, Beatrice, Bertrand, Kit, Lemony
b. Leslie, Ron, Tom, Jerry, Larry, Garry, April, Andy
c. Aaron, Andrew, Chris, Colin, Jason, Leslie, Wesley

10. Is It a BST?
Write a function that takes in the root of a tree of integers and returns whether or not the binary tree is in valid
BST order.

11. Level-Order Heaps
A level order traversals of binary trees prints out the root, then its children, then its grandchildren, and so on.
Write a function that, given an integer heap array and its size, prints out an level-order traversal of the heap.

12. Quad Trees [Challenge Problem]
A quadtree is a tree structure with applications in computer graphics, where they are used as in-memory models of
images. In a quadtree, each internal node has precisely four children. Each node in the tree represents a square,
and if a node has children, each encodes one of the square's four quadrants. This diagram, courtesy of Wikipedia,
illustrates you might use a quad tree to represent a black-and-white image.

The 8-by-8 pixel image on the left is modeled by the quadtree on the right. Note that all leaf nodes are either black
or white, and all internal nodes are shaded gray. The internal nodes are grey to reflect the fact that they contain
both black and white pixels. When the pixels covered by a particular node are all the same color, the color is
stored in the form of a boolean and all four children are set to NULL. Otherwise, the node's sub-region is
recursively subdivided into four-subquadrants, each represented by one of four children.

Write a function that takes in a Grid of booleans (where a black pixel is true and a white pixel is false) and
returns the root of the corresponding quadtree. Assume the lower left corner of the image is the origin, the image
is square, and the dimension is a power of two. You should use the following structure for each node in the tree:

struct QuadTreeNode {
 int minX, maxX; // smallest and largest x value covered by node
 int minY, maxY; // smallest and largest y value covered by node
 bool isBlack; // true if node is black; false if node is white; ignored otherwise
 QuadTreeNode *children[4]; // 0 is NW, 1 is NE, 2 is SE, 3 is SW
};

