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Section Handout #7 
This week has practice with graph structures, including graph properties and algorithms that act on graphs. 
Assume the following structures have been declared: 

Vertex Edge  
struct  Vertex  {  
    string  name;  
    Set<Edge  *>  edges;  
    double  cost;  
    bool  visited;  
    Vertex  *previous;  
};  

struct  Edge  {  
    Vertex  *start;  
    Vertex  *finish;  
    double  cost;  
    bool  visited;  
}  

  

 
1. Graph Properties 
For each of the graphs shown below, answer the following questions. 

a)   Is the graph directed or undirected? 
b)   Is the graph weighted or unweighted? 
c)   Which graphs are connected, and which are not? Is any graph strongly connected? 
d)   Which graphs are cyclic, and which are acyclic? 
e)   What is the degree of each vertex? (If directed, what is the in-degree and the out-degree?) 

Graph 1 

 

Graph 2 
 

 

Graph 3 
 

 

Graph 4 
 

 

Graph 5 
 

 

Graph 6 
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2. Depth-First Search (DFS) 
Write the paths that a depth-first search would find from vertex A to all other vertices in the following graphs. If a 
given vertex is not reachable from vertex A, write "no path" or "unreachable." 

●   in Graph 1 
●   in Graph 6 

 

3. Breadth-First Search (BFS) 
Write the paths that a depth-first search would find from vertex A to all other vertices in the following graphs. If a 
given vertex is not reachable from vertex A, write "no path" or "unreachable." 

●   in Graph 1 
●   in Graph 6 

 

4. Minimum Weight Paths 
Which paths found by DFS and BFS on Graph 6 in the previous problems are not minimal weight? What are the 
minimal weight paths from vertex A to all other nodes?  

5. kth Level Friends 
Imagine a graph of Facebook friends, where users are vertices and friendship are edges. Write a function that 
takes in a social network graph, a Vertex in that graph, and a value k and returns the set of people who are exactly 
k hops away from the Vertex (and not fewer). For example, if k = 1, those are v's direct friends; if k = 2, they are 
your friends-of-friends. If k = 0, return a set containing only the user. Assume input arguments are valid. 

6. Has a Cycle 
Write a function that returns true if a graph contains any cycles, or false if not. 

7. Is It Connected? 
Write a function that takes in a graph and returns true if a path can be made from every vertex to any other vertex, 
or false if there is any vertex that cannot be reached by a path from some other vertex. An empty graph is defined 
as being connected.  

8. Game of Thrones 
Recall that a complete graph is an undirected graph where every single graph node is connected to every other 
node. A tournament graph is a directed graph that comes from a complete graph where you impose a direction on 
each and every arc. Informally, a tournament graph is a summary of who prevailed over whom in an exhaustive 
competition of one-on-one matches, where every single person eventually competes – exactly once – against 
everyone else. Below, on the left, is a complete graph on five nodes, and on the right is one possible tournament 
graph that can be derived from the complete graph. 

  
 
The tournament graph on the above right states that player 1 beat players 2, 3, and 4 (but not 5), that player 2 lost 
to everybody, and so on. 



  

A tournament king is a node in a tournament representing someone who, for every other player, either directly 
prevailed over that player, or prevailed over someone who prevailed over that player. In other words, a node is a 
king if one can travel from it to every other node via a path at most 2 arcs. In the above example, players 1, 3, and 
5 are all kings, but players 2 and 4 are not. Take some time to figure out why that is. Then, write a function that, 
given a tournament graph, returns the tournament kings for that graph. 

9. Minimum Vertex Cover [Challenge] 
A vertex cover is a subset of an undirected graph's vertices such that each and every edge in the graph is incident 
to at least one vertex in the subset. A minimum vertex cover is a vertex cover of the smallest possible size (where 
the size is determined by the number of nodes in the cover). Suppose you have the following graph on the left. 

Graph Vertex Covers    

     
 
Each of the four illustrations on the right shows some vertex cover where shaded nodes are included in the vertex 
cover and hollow ones are excluded. Each one is a vertex cover because each edge touches at least one vertex in 
the cover. The two vertex covers on the right are minimum vertex covers because you can't have a vertex cover 
with fewer than two nodes. 

Write a function that, given a graph, returns a minimum vertex cover for the graph. If there are multiple minimum 
vertex covers, you can return an arbitrary one. 


