
YEAH - Serafini
Jason Chen

Original slides by: Anton Apostolatos

Source: XKCD

Word
Ladders

Random
Writer

A2: Serafini

Word Ladders

A word ladder is a connection from one word to another, where:

map → mat ✓ map → sit ✘

blame → bhame → shame ✘

bit → sit → fit ✘bit → fit ✓

2) Every word in the ladder is valid

3) Shortest possible!

1) Each word is one character different than the previous

Demo!

Welcome to CS 106B Word Ladder.
Please give me two English words, and I will change the
first into the second by changing one letter at a time.

Dictionary file name? dictionary.txt

Word #1 (or Enter to quit): code
Word #2 (or Enter to quit): data
A ladder from data back to code:
data date cate cade code

Word #1 (or Enter to quit):
Have a nice day.

Dictionary file name? notfound.txt
Unable to open that file. Try again.
Dictionary file name? oops.txt
Unable to open that file. Try again.
Dictionary file name? smalldict1.txt

Word #1 (or Enter to quit): ghost
Word #2 (or Enter to quit): boo
The two words must be the same length.

Word #1 (or Enter to quit): marty
Word #2 (or Enter to quit): keith
The two words must be found in the dictionary.

Word #1 (or Enter to quit): kitty
Word #2 (or Enter to quit): kitty
The two words must be different.

Dictionary file name? dictionary.txt

Word #1 (or Enter to quit): metal
Word #2 (or Enter to quit): azure
No word ladder found from azure back to metal.

Word #1 (or Enter to quit): kwyjibo
Word #2 (or Enter to quit): fluxbar
The two words must be found in the dictionary.

Word #1 (or Enter to quit): monkey
Word #2 (or Enter to quit): monkey
The two words must be different.

Word #1 (or Enter to quit): partial
Word #2 (or Enter to quit):
Have a nice day.

Pseudocode
create an empty queue
add the start word to a ladder. then add the ladder to the end of the queue

while (the queue is not empty):
dequeue the first ladder from the queue

if (the final word in this ladder is the destination word):

 return this ladder as the solution

for (each word in the lexicon of English words that differs by one letter):
if (that word has not been already used in a ladder):

create a copy of the current ladder
add the new word to the end of the copy
add the new ladder to the end of the queue

return that no word ladder exists

How do we know it’s the
shortest path?

How to store ladder? Seen words?
Design Decision

Queue<Stack>

Stack<Queue>

Stack<Stack>

Queue<Queue>

How to store ladder?

A short comparison of stacks vs queues

code => data

{bode, core, mode ...} [1 letter away]

if using a stack:

{bade, bide, bore, core, mode …}

if using a queue:

{core, mode, bade, bide, bore …}

SET

How to store seen words?

Finding “neighbors”

1. some measure of distance is implicit

 2. for each dimension, explore all options within a certain distance

 Game of Life Word Ladder

Dimensions: x / y word length

All options: { -1, 0, 1} {a - z}

Starter code - wordladder.cpp
#include <cctype>

#include <cmath>

#include <fstream>

#include <iostream>

#include <string>

#include "console.h"

using namespace std;

int main() {

 // TODO: Finish the program!

 cout << "Have a nice day." << endl;

 return 0;

}

Steps

1. Load the dictionary. The file EnglishWords.dat, which is bundled with
the starter files, contains just about every legal English word.

2. Prompt the user for two words to try to connect with a ladder. For

each of those words, make sure to reprompt the user until they enter
valid English words. They don’t necessarily have to be the same length,
though – if they aren’t, it just means that your search won’t find a word
ladder between them.

3. Find the shortest word ladder. Use breadth-first search, as described
before, to search for a word ladder from the first word to the second.

1.

2.

3.

4. Report what you’ve found. Once your breadth-first search terminates:

a. If you found a word ladder, print it out to the console.

b. If you don’t find a word ladder, print out a message to that effect.

5. Ask to continue. Prompt for whether to look for another ladder between a
pair of words.

Steps II

- Pick data structures wisely: not all ADTs are made equal

Tips and Tricks

- Watch out for case sensitivity

Work ↔ wOrK

bit → bat → fat ✓bit → fit → fat ✓

- Ties don’t matter: don’t worry about multiple ladders
of the same length

- Passing variables by reference: Try passing in the Lexicon by value and
by reference and just watch the difference in runtime! Think about what
other variables you should be passing by reference.

Questions?

http://web.stanford.edu/class/cs106b/assn/serafini.pdf

Random Writer

“A monkey hitting keys at random on a

typewriter keyboard for an infinite amount

of time will almost surely type [...] the

complete works of William Shakespeare.” -

Wikipedia

Infinite Monkey Theorem

“To be or
not to be
just
be who you
want to be
or not okay
you want
okay”

Original text

{ {to, be} : {or, just, or},
 {be, or} : {not, not},
 {or, not} : {to, okay},
 {not, to} : {be},
 {be, just} : {be},
 {just, be} : {who},
 {be, who} : {you},
 {who, you} : {want},
 {you, want} : {to, okay},
 {want, to} : {be},
 {not, okay} : {you},
 {okay, you} : {want},
 {want, okay} : {to},
 {okay, to} : {be} }

3-grams

... [fill in
during YEAH
hours] ...

Made-up text

Connects a collection of N - 1 words to all Nth words that follow it in the text

Build
Map

Generate
Random

Text

Generating Random Text

1. Pick a random key in your map

2. For each subsequent word
randomly choose one using last
two words in generated text

3. Repeat (2) until complete!

... chapel.

Ham. Do not

believe his

tenders, as you

go to this

fellow. Whose

grave's ...

N-Gram Fun Facts
https://books.google.com/ngrams

http://storage.googleapis.com/books/ngrams/books/datas
etsv2.html

https://web.stanford.edu/~jurafsky/slp3/4.pdf
[language modeling]

What is the tradeoff between smaller and larger values of
N?

https://books.google.com/ngrams
https://books.google.com/ngrams
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
https://web.stanford.edu/~jurafsky/slp3/4.pdf
https://web.stanford.edu/~jurafsky/slp3/4.pdf

Demo!

Welcome to CS 106B Random Writer ('N-Grams').
This program makes random text based on a document.
Give me an input file and an 'N' value for groups
of words, and I'll create random text for you.

Input file name? tiny.txt
Value of N? 3

of random words to generate (0 to quit)? 8
... or not to be or not okay you ...

of random words to generate (0 to quit)? 20
... be who you want to be or not to be just be who you want to be or not okay
...

of random words to generate (0 to quit)? 0
Exiting.

Input file name? badfile
Unable to open that file. Try again.
Input file name? notfound.txt
Unable to open that file. Try again.
Input file name? hamlet.txt
Value of N? 0
N must be 2 or greater.
Value of N? -4
N must be 2 or greater.
Value of N? aoeu
Illegal integer format. Try again.
Value of N? 4

of random words to generate (0 to quit)? xyz
Illegal integer format. Try again.
of random words to generate (0 to quit)? 2
Must be at least 4 words.

Step 1: Build Map

Map<String, int> phonebook;

Key Value

Note that window
is of size N-1!

Wrapping!How can we implement
wrapping...?

Wrapping - why do we wrap?

1. wrapping gives the user a gracious handling of edge cases

 2. you can think of wrapping as essentially an approximation of the truth

How do we store keys / values in the Map?
Design Decision

Step 2: Generate Random Text

Generating Random Text

1. Pick a random key in your map

2. For each subsequent word
randomly choose one using last
two words in generated text

3. Repeat (2) until complete!

... chapel.

Ham. Do not

believe his

tenders, as you

go to this

fellow. Whose

grave's ...

Tips and Tricks
- Think about the collections you want to use in every case. Plan ahead.

- Test each function with small input (tiny.txt)

- To choose a random prefix from a map, consider using the map's keys
member function, which returns a Vector containing all of the keys in the
map.

- For randomness in general, check out "random.h".

- You can loop over the elements of a vector or set using a for-each loop. A
for-each also works on a map, iterating over the keys in the map.

Questions?

http://web.stanford.edu/class/cs106b/assn/serafini.pdf

filelib.h

simpio.h

map.h

set.h

stack.h

queue.h

spellcheck

“I am honered to serve you…”

1. word ladder [distance]
hovered, honeyed, honored [1 letter away]

2. ngram map [frequency]
{“am” : {tired, honored, honored, hovered} … }

