
YEAH - Game of Life
Jason Chen

Original slides by: Anton Apostolatos

Section leaders are friends, not food
- Once a week to go over material we’ve gone over in class that

week

- All problems will be found in CodeStepByStep

- Your SL will grade your assignments and will meet with you
personally for each assignment for Interactive Grading (IGs)

- Roughly one week turnaround

- Your SL is your point-person (and a main resource for help)!

- LaIR opens up today!

John von Neumann John Conway

Von Neumann and Conway’s “Game of Life”

The idea behind cellular automata is that the behavior of
a group can be
described by examining the interactions between an
individual simple machine, termed an automaton, and
the nearby identical automata that directly interact with
it. These automata, referred to as cells, affect the cell in
focus and define that cell’s neighborhood and change
depending on the rules of interaction in the system.

- John von Neumann (1966)

 Game of Life - John Horton Conway (1970)

X

X

X X

X

X X

X X

X X

Living cell

Dead cell

?X X X

 For each cell, from time t to time t + 1:

0-1 neighbors → dead cell

2 neighbors → stable

3 neighbors → live cell

4-8 neighbors → dead cell

Time: t Time: t + 1

X

X

X

Starter code

#include <iostream>

#include <string>

#include "lifegui.h"

using namespace std;

int main() {

 // TODO: Finish the program!

 cout << "Have a nice Life!" << endl;

 return 0;

}

The purpose of this assignment is to gain
familiarity with basic C++ features such as
functions, strings, and I/O streams, using
provided libraries, and decomposing a large
problem into smaller functions.

Demo

(also check out Chris’ demo starting from 6:00 into Lecture 2)

Tips

Tip I: Decompose!
“Nothing is more
permanent than
the temporary”

Styleguide at:
https://web.stanford.edu/class/cs106b/handouts/styleguide.html

Tip II: Outline before you write!

Implementation

File Structure

5 <-- number of rows

9 <-- number of columns

--------- <-- grid of cells

---XXX---

simple.txt <-- optional junk/comments

This file is a <-- at bottom (should be ignored)

basic grid of

cells.

mycolony.txt: your chance to be creative!

How to store the world?
Design Decision

 Game of Life - John Horton Conway (1970)

X

X

X X

X

X X

X X

X X

Living cell

Dead cell

Stanford C++ Grid class
Grid(nRows, nCols, value) // Initializes a new grid of the given size, with
 every cell set to the given value.

numRows() // Returns the number of rows in the grid.

numCols() // Returns the number of columns in the grid.

inBounds(row, col) // Returns true if row/col are inside grid bounds

get(row, col) // Returns element at row/col position

Grid documentation at: https://stanford.edu/~stepp/cppdoc/Grid-class.html

[[0, 0, 0, 0, 0],

 [0, 0, 0, 0, 0],

 [0, 0, 0, 0, 0]

 [0, 0, 0, 0, 0]]

[[0, 0, 0, 0, 0],

 [0, 0, 0, 0, 0],

 [0, 0, 0, 0, 0]

 [0, 0, 0, 0, 0]]

[[0, 0, 0, 0, 0],

 [0, 0, 0, 0, 0],

 [0, 0, 0, 0, 0]

 [0, 0, 0, 0, 0]]

grid[2][3]

0 1 2 3

0

1 X

2

3

0 1 2 3

0

1 X

2

3

(row,col)

(row, col - 1)

Useful Functions

 promptUserForFile(stream, prompt)
 ^ another function you could use that wasn’t included in the original slides.

Full documentation at: https://stanford.edu/~stepp/cppdoc/

Corners?

Non-wrapping

- The world wraps around
top-bottom and left-right

- Use the mod (%) operator

(a % b) returns the remainder of a / b

- Neighbors outside of the world
are ignored

Wrapping

mod %

10 % 10 ?

4 % 3 ?

7 % 1?

12 % 5?

(row, (col - 1 + numCols) % numCols)

(row,col)

Steps

1. Setup. Get the project running and print intro welcome
message

2. File input. Write code to prompt for a filename, and open
and print that file's lines to the console. Once this works, try
reading the individual grid cells and turning them into a Grid
object.

3. Grid display. Write code to print the current state of the
grid, without modifying that state.

1.

2.

3.

4. Updating to next generation. Write code to advance the
grid from one generation to the next.

5. Overall menu and animation. Implement the program's
main menu and the animation feature.

6. Extensions. If you do one step a day starting from today,
you’ll still have three days to do extensions! :) A list of
suggestions is offered at the end of the handout. I
personally suggest adding the graphical component. It’s
super pretty!

Steps II

Documentation

http://stanford.edu/~stepp/cppdoc/

if you start to think “there must be an
easier way to do this nitty gritty string

processing...”

there most probably is.

http://stanford.edu/~stepp/cppdoc/
http://stanford.edu/~stepp/cppdoc/

filelib.h

grid.h

simpio.h

strlib.h

Questions?

piazza
your section leader

your classmates
Chris
Jason

piazza
your section leader

your classmates
Chris
Jason

the assignment handout!! :)

Starter code

#include <iostream>

#include <string>

#include "lifegui.h"

using namespace std;

int main() {

 // TODO: Finish the program!

 cout << "Have a nice Life!" << endl;

 return 0;

}

Glider

Pentadecathlon

Pulsar

http://www.youtube.com/watch?v=C2vgICfQawE

