
YEAH - Patient Queue
Jason Chen

Original slides by: Anton Apostolatos

Source: XKCD

Queue: order items by when they were placed - first in, first out (FIFO)

Main Functions
void enqueue(string s) // Inserts an element into the queue
string dequeue() // Returns and removes the first element placed

PriorityQueue: order items by priority

Main Functions
void enqueue(string s, int priority) // Puts element into priority queue
string dequeue() // Returns and removes the highest-priority item

PatientQueue: order patients by priority

Main Functions
void newPatient(string name, int priority) // Puts person into patient queue
string processPatient() // Returns and removes the highest-priority person

Lower number = higher priority!
Note: time in queue is the tiebreaker

(“Merry” : 1) < (“Frodo” : 3) < (“Pippin” : 3) < (“Sam” : 6)

PatientQueue pq;

pq.newPatient(“Sam”, 6);
pq.newPatient(“Frodo”, 3);
pq.newPatient(“Pippin”, 3);
pq.newPatient(“Merry”, 1);

cout << pq.processPatient() << endl;
cout << pq.processPatient() << endl;

Merry
Frodo

Console

Main Functions

PatientQueue() // Constructor for PatientQueue

~PatientQueue() // Destructor for PatientQueue

void newPatient(string name, int priority) // Puts element into patient queue

string processPatient() // Returns and removes the highest-priority item

string frontName() // Name of highest-priority patient

int frontPriority() // Priority of highest-priority patient

void upgradePatient(string name, int newPriority)// updates patient to
// higher priority

void clear() // Removes all patients

string toString() // Returns the PatientQueue as a string

Unsorted Vector

A5: Patient
Queue

Sorted Singly-Linked List

Extension: Binary Heap

“Pam” : 2 “Dwight” : 3 “Jim” : 3 “Toby” : 72

“George”
2

“Ringo”
5

“John”
8

“Paul”
9

Unsorted Vector
“Pam” : 12 “Dwight” : 13 “Jim” : 3 “Toby” : 72

Unsorted and Vector wrapper - Simplest to implement and think about!

newPatient(string name, int priority): append to a vector!
processPatient()/front(): scan vector and find smallest element

processPatient()
“Pam” : 12 “Dwight” : 13 “Jim” : 3 “Toby” : 72

“Pam” : 12 “Dwight” : 13 “Toby” : 72

“Jim” : 3

A vector of what?!

Struct!

What does the struct store?

Up to you!

Questions?

Sorted Singly-Linked List
“George”

2
“Ringo”

5
“John”

8
“Paul”

9

Draw as
you code!

PatientNode Struct

struct PatientNode {
string name;
int priority;
PatientNode* next;

// Constructor - each parameter is optional
PatientNode(string name, int priority, PatientNode* next);

}

You need to create a Linked List and enforce that all elements are
stored in order of priority, with time in queue being tiebreaker

newPatient(): look for place in the linked list and place there
processPatient()/front(): first element!

“George”
2

“Ringo”
5

“John”
8

“Paul”
9

newPatient()

“Yoko”
5

“George”
2

“Ringo”
5

“John”
8

“Paul”
9

“Yoko”
5

Tips and Tricks
- Before writing any code, go through simple toy examples by hand to

make sure your proposed solution’s logic is sound. Always think about
edge cases like if the your patient queue was empty, had one element, or
if you were inserting at the very front or end.

- Don’t forget the semicolon after a struct or class definition!

- Bad idea to declare multiple pointers on the same line:

Node * head, tail;

Tips and Tricks: Continued
- Nested structs are weird. This probably won’t come up, but if you create a

cell inside of PQueue then a helper function that returns a PatientNode*
would be declared as:

PatientNode* helperFunction(PatientNode* ptr);

- And would be implemented as

PQueue::PatientNode* PQueue::helperFunction(PatientNode* ptr);

- Do your best to make your size functions not O(n)! → how?

- We’ll ask you for Big-O of every function you write!

Main Functions

PatientQueue() // Constructor for PatientQueue

~PatientQueue() // Destructor for PatientQueue

void newPatient(string name, int priority) // Puts element into patient queue

string processPatient() // Returns and removes the highest-priority item

string frontName() // Name of highest-priority patient

int frontPriority() // Priority of highest-priority patient

void upgradePatient(string name, int newPriority)// updates patient to
// higher priority

void clear() // Removes all patients

string toString() // Returns the PatientQueue as a string

Questions?

Extension: Binary Heap

Binary Heaps

A heap is a tree-based structure that satisfies
the heap property:

Parents have a higher priority than any of
their children.

Binary Heaps
•There are two types of heaps:

Min Heap

(root is the smallest element)

22

12

43

5

11

810

1314

2

17

7

50

3

3619

125

Max Heap

(root is the largest element)

Binary Heaps

•There are no implied orderings between siblings, so both of
the trees below are min-heaps:

5

1210

5

1012

Binary Heaps

•Circle the min-heap(s):

22

12

11

5

85

810

1314

25

24

26

13

99

3619

4246

Binary Heaps

Heaps are completely filled, with the exception
of the bottom level. They are, therefore,
"complete binary trees":

complete: all levels filled except the bottom

binary: two children per node (parent)
22

12

43

5

11

810

1314

height? log(n)

Binary Heaps

What is the best way to store a heap?

22

12

43

5

11

810

1314

We could use a node-based solution, but…

Binary Heaps

It turns out that an array works great for
storing a binary heap!

We will put the root at index 1 instead of
index 0 (this makes the math work out just a
bit nicer).

22

12

43

5

11

810

1314

5 10 8 12 11 14 13 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Binary Heaps

The array representation makes determining parents and
children a matter of simple arithmetic:

For an element at position i:
- left child is at 2i
- right child is at 2i+1
- parent is at ⌊i/2⌋

5 10 8 12 11 14 13 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

22

12

43

5

11

810

1314

Heap Operations
Remember that there are three important
priority queue operations:

- peek(): return an element of h with the
smallest key.

- enqueue(e): insert element e into the
heap.

- dequeueMin(): removes the smallest
element from h.

We can accomplish this with a heap!
22

12

43

5

11

810

1314

Heap Operations: peek()

peek()

Just return the root!

return heap[1]

22

12

43

5

11

810

1314

5 10 8 12 11 14 13 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Heap Operations: enqueue(k)

enqueue(k)

How might we go about inserting into a binary
heap?

22

12

43

5

11

810

1314

5 10 8 12 11 14 13 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Heap Operations: enqueue(k)

Insert item at element array[heap.size()+1]
(this probably destroys the heap property)

Perform a “bubble up” operation:
- Compare the added element with its parent

- if in correct order, stop
- If not, swap and repeat

Heap Operations: enqueue(k)

22

12

43

5

11

810

1314

22

12

43

5

11

810

1314

5 10 8 12 11 14 13 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Start by inserting the key at the first empty
position. This is always at index

heap.size()+1.

Heap Operations: enqueue(9)

22

12

43

5

11

810

1314

5 10 8 12 11 14 13 22 43 9
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Start by inserting the key at the first empty
position. This is always at index

heap.size()+1.9

Heap Operations: enqueue(9)

Heap Operations: enqueue(9)

5 10 8 12 11 14 13 22 43 9
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

22

12

43

5

11

810

1314

9

Look at parent of index 10, and compare:
do we meet the heap property

requirement?

Heap Operations: enqueue(9)

5 10 8 12 11 14 13 22 43 9
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

22

12

43

5

11

810

1314

9

Look at parent of index 10, and compare:
do we meet the heap property

requirement?

No -- we must swap.

Heap Operations: enqueue(9)

22

12

43

5

9

810

1314

5 10 8 12 9 14 13 22 43 11
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

11

Heap Operations: enqueue(9)

22

12

43

5

9

810

1314

5 10 8 12 9 14 13 22 43 11
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

11
Look at parent of index 5, and compare: do

we meet the heap property requirement?

No -- we must swap.

Heap Operations: enqueue(9)

22

12

43

5

9

810

1314

5 10 8 12 9 14 13 22 43 11
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

11

Heap Operations: enqueue(9)

22

12

43

5

9 8

10 1314

5 9 8 12 10 14 13 22 43 11
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

11

Heap Operations: enqueue(9) 41

22

12

43

5

9 8

10 1314

5 9 8 12 10 14 13 22 43 11
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

11

No swap necessary between index 2 and its parent.
We're done bubbling up!

Demo!

http://www.cs.usfca.edu/~galles/visualization/Heap.html

http://www.cs.usfca.edu/~galles/visualization/Heap.html

Heap Operations: dequeue()

•How might we go about removing the
minimum?

dequeue()

5 9 8 12 10 14 11 22 43 13
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 22

12

43

5

9 8

10 1114

13

Heap Operations: dequeue()

22

12

43

5

9 8

10 1114

13

We are removing the root, and we need to retain a
complete tree: replace root with last element.

“bubble-down” or “down-heap” the new root:

- Compare the root with its children:
- if in correct order, stop.
- if not, swap with smallest child, and repeat

Heap Operations: dequeue()

5 9 8 12 10 14 11 22 43 13
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

22

12

43

5

9 8

10 1114

13

Heap Operations: dequeue()

5 9 8 12 10 14 11 22 43 13
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

22

12

43

5

9 8

10 1114

13

Remove root (will return at the end)

Heap Operations: dequeue()
Move last element (at

heap[heap.size()]) to the root (this may
be unintuitive!) to begin bubble-down

5 9 8 12 10 14 11 22 43 13
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

22

12

43

9 8

10 1114

13

Heap Operations: dequeue()

Compare children of root with root: swap root with the smaller one (why?)

22

12

43

9 8

10 1114

13
13 9 8 12 10 14 11 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Heap Operations: dequeue()
Keep swapping new element if necessary. In this case: compare 13 to 11

and 14, and swap with smallest (11).

22

12

43

9

8

10 1114

13
8 9 13 12 10 14 11 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Heap Operations: dequeue()

13 has now bubbled down until it has no more children, so we are done!

22

12

43

9

8

10

11

14 13

8 9 11 12 10 14 13 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Questions?

