YEAH Hours
Trailblezer
Summer 20917

AHug 9, 2017

Agendsa

Logistics

Assignment overview

Demo

Deep dive

Questions

Feel free to stop me anytime for questions!

Logistics

e Lastassignment!
e Due onWed (Aug 16).
e No late days.

Graphs.. the Final Frontier

e They're eve

Internet

rywhere

B1

w = 0;
x =x + ¥;
¥ =0;

ENTER
if(x > z)
B2
Yy = x;
x++

B2
Yy =2z;

82/ B1 \Ba
_/

|

EXIT

B4

w =X

Basic Blocks Flow Graph

Compilers Scheduling

And so much more - come up in every field

TODO

4 Algorithms
Nice handout here:
http://web.stanford.edu/class/cs106b/handouts/search.html

Path breadthFirstSearch(RoadGraph graph, RoadNode* start, RoadNode*

Path dijkstrasAlgorithm(RoadGraph graph, RoadNode* start, RoadNode*
Path aStar(RoadGraph graph, RoadNode* start, RoadNode*
Path alternateRoute(RoadGraph graph, RoadNode* start, RoadNode*

Terminology)

e RoadGraph == BasicGraph
e RoadNode == Vertex
e Path == Vector<Vertex*>

RoadGraph

class RoadGraph {
/* Returns the set of all the nodes adjacent to the given node. */
Set<RoadNode*> neighborsOf(RoadNode* v) const;

/* Given a start and end node, returns the edge that links them, or
* nullptr if there is no such edge. */
RoadEdge* getEdge(RoadNode* start, RoadNode* end) const;

/* Returns the highest speed permitted on any road in the network. */
double getMaxRoadSpeed() const;

/* Returns the "straight-line" distance between the two nodes; that is,
* the distance between them if you just drew a line connecting them. */
double getCrowFlyDistance(RoadNode* start, RoadNode* end) const;

RoadNode

class RoadNode {
// Name of the node, for testing and debugging
string nodeName() const;

// Outgoing edges from this node

Set<RoadEdge*> outgoingEdges() const;

// Should be one of Color::GRAY, Color::YELLOW, or Color::GREEN
void setColor(Color color);

// For debugging
string toString() const;

Xs

Watching Your Algorithm Progress

e RoadNode Colors

O Grey is default
O Yellow is “enqueued” (BFS, Dijkstra)

® Greenis visisted

BIFS

bfs from v1 to v2:
create a queue of paths (a vector), g
g.enqueue(v1 path)
while g is not empty and v2 is not yet visited:
path = g.dequeue()
v = last element in path
if v is not visited:
mark v as visited
if v is the end vertex, we can stop after adding to
the current path.
for each unvisited neighbor of v:
make new path with v's neighbor as last element
engueue new path onto g

Dijkstra

e Chris will talk about tomorrow
e Search for weighted graph to find shortest path

%

Chris will talk about tomorrow
Think about it like driving with a friend who's local - they
have heuristic knowledge about what route to take

If we know what the expected distance is then we can try
paths that get us closer faster

getCrowFlyDistance and getMaxRoadSpeed useful here

Alternative

5o A
Alameda

Hitgwiard

Linkgsn City

Erema

g

Pl Ao

Faster route now available

Reroute

Ma thanks

Alternative

First find the shortest path (i.e. Dijkstra)
Then remove edges from that path and calculate path

that ignores that edge

Find lowest cost path that’s sufficiently different
Sufficiently different: SUFFICIENT_DIFFERENCE

threshold

of nodes in alt. path not in main path

diff =

of nodes in alt. path

Testing/Sanity Check

e BFS should be the same as expected output
e Dijkstra and A* should be same cost (potentially could be
different path)

Creative

e Create your own map!

Suggestions

e In order from easiest to hardest
e Pick small map/routes at first and trace through for
debugging

Good Luck!

