
YEAH Hours
Trailblazer
Summer 2017

Aug 9, 2017

Agenda

● Logistics

● Assignment overview

● Demo

● Deep dive

● Questions

● Feel free to stop me anytime for questions!

Logistics

● Last assignment!

● Due on Wed (Aug 16).

● No late days.

Graphs… the final frontier

● They’re everywhere

Internet Compilers Scheduling

And so much more - come up in every field

Demo

TODO
4 Algorithms

Nice handout here:

http://web.stanford.edu/class/cs106b/handouts/search.html

Path breadthFirstSearch(RoadGraph graph, RoadNode* start, RoadNode* end)

Path dijkstrasAlgorithm(RoadGraph graph, RoadNode* start, RoadNode* end)

 Path aStar(RoadGraph graph, RoadNode* start, RoadNode* end)

 Path alternateRoute(RoadGraph graph, RoadNode* start, RoadNode* end)

Terminology

● RoadGraph == BasicGraph

● RoadNode == Vertex

● Path == Vector<Vertex*>

RoadGraph
class RoadGraph {

 /* Returns the set of all the nodes adjacent to the given node. */

 Set<RoadNode*> neighborsOf(RoadNode* v) const;

 /* Given a start and end node, returns the edge that links them, or

 * nullptr if there is no such edge. */

 RoadEdge* getEdge(RoadNode* start, RoadNode* end) const;

 /* Returns the highest speed permitted on any road in the network. */

 double getMaxRoadSpeed() const;

 /* Returns the "straight-line" distance between the two nodes; that is,

 * the distance between them if you just drew a line connecting them. */

 double getCrowFlyDistance(RoadNode* start, RoadNode* end) const;

};

RoadNode
class RoadNode {

// Name of the node, for testing and debugging

 string nodeName() const;

// Outgoing edges from this node

 Set<RoadEdge*> outgoingEdges() const;

 // Should be one of Color::GRAY, Color::YELLOW, or Color::GREEN

void setColor(Color color);

// For debugging

 string toString() const;

};

Watching Your Algorithm Progress

● RoadNode Colors

● Grey is default

● Yellow is “enqueued” (BFS, Dijkstra)

● Green is visisted

BFS

bfs from v1 to v2:
create a queue of paths (a vector), q
q.enqueue(v1 path)
while q is not empty and v2 is not yet visited:

path = q.dequeue()
v = last element in path
if v is not visited:

mark v as visited
if v is the end vertex, we can stop after adding to

the current path.
for each unvisited neighbor of v:

make new path with v's neighbor as last element
enqueue new path onto q

Dijkstra

● Chris will talk about tomorrow

● Search for weighted graph to find shortest path

A*

● Chris will talk about tomorrow

● Think about it like driving with a friend who’s local - they

have heuristic knowledge about what route to take

● If we know what the expected distance is then we can try

paths that get us closer faster

● getCrowFlyDistance and getMaxRoadSpeed useful here

Alternative

Alternative

● First find the shortest path (i.e. Dijkstra)

● Then remove edges from that path and calculate path

that ignores that edge

● Find lowest cost path that’s sufficiently different

● Sufficiently different: SUFFICIENT_DIFFERENCE

threshold

 # of nodes in alt. path not in main path
 diff =

 # of nodes in alt. path

Testing/Sanity Check

● BFS should be the same as expected output

● Dijkstra and A* should be same cost (potentially could be

different path)

Creative

● Create your own map!

Suggestions

● In order from easiest to hardest

● Pick small map/routes at first and trace through for

debugging

Good Luck!

