
 Page 1 of 10

CS106B

Spring 2017 May 4th, 2017

CS106B Midterm KEY
	

This is a closed note, closed-book exam. You are allowed one back-and-front page of
notes, and the reference sheet posted on the course website. You may not use any
laptops, cell phones, or internet devices of any sort, unless you are taking the exam on a
laptop, which must only be used for the exam. You will be graded on functionality—
but good style helps graders understand what you were attempting. You do not need to
#include any libraries and you do not need to forward declare any functions. You have
2 hours. We hope this exam is an exciting journey.

Last Name: _____________________

First Name: _____________________

Sunet ID (eg jdoe): _____________________

Section Leader: _____________________

I accept the letter and spirit of the honor code. I’ve neither given nor received aid on
this exam. I pledge to write more neatly than I ever have in my entire life.

 (signed) ___
	

	

	 	 	 	Score	 		Grader	

1.	Algorithm	Analysis	and	Big-O	 [10]	 ______		 ______	

2.	Stacks	and/or	Queues	 [12]	 ______		 ______	

3.	Recursion	Tracing	 [10]	 ______		 ______	

4.	ADTs		 	 [12]	 ______		 ______	

5.	Traveling	Salesman	Problem	 [15]	 ______		 ______	

Practice	Midterm	Bonus	 [1]	 ______		

	

Total	 [59]	 ______		 ______	

 Page 2 of 10

Question 1: Algorithm Analysis and Big O (10 Points)

Give a tight bound of the nearest runtime complexity class for each of the following
code fragments in Big-Oh notation, in terms of variable N. (Write the growth rate as N
grows.) Write a simple expression that gives only a power of N, such as O(N2) or O(log
N), not an exact calculation like O(2N3 + 4N + 14). Write your answer in the blanks on
the right side.

Question Answer (2 points each)
a)
int sum = 0;
for (int i = 0; i < N; i++) {
 sum++;
}
for (int i = 100*N; i >= 0; i--) {
 sum++;
}
cout << sum << endl;

O(_____N______)

b)
int sum = 0;
for (int i = 1; i < N - 2; i++) {
 for (int j = 0; j < N * 3; j += 2) {
 for (int k = 0; k < 1000; k++) {
 sum++;
 }
 }
}
cout << sum << endl;

O(_____N2______)

c)
Vector<int> v;
for (int i = 0; i < N; i++) {
 v.add(i);
}
while (!v.isEmpty()) {
 v.remove(0);
}
cout << "done!" << endl;

O(_____N2______)

d)
Set<int> set;
for (int i = 0; i < N/2; i++) {
 set.add(i);
}
Stack<int> stack;
for (int i = 0; i < N/2; i++) {
 set.remove(i);
 stack.push(i);
}

cout << "done!" << endl;

O(_____N log N______)

e)
Queue<int> queue;
for (int i = 1; i <= N; i++) {
 queue.enqueue(i * i);
}
HashMap<int, int> map;
while (!queue.isEmpty()) {
 int k = queue.dequeue();
 map.put(k, N * N);
}
cout << "done!" << endl;

O(_____N______)

 Page 3 of 10

Question 2: Stacks and / or Queues (12 Points)

For this problem, you will be given a sequence consisting of the letters ‘I’ and ‘D’
where ‘I’ denotes an increasing sequence and ‘D’ denotes a decreasing sequence of
numbers. Here are some examples:

Sequence ➔	 Output
IIDDIDID ➔ 125437698
IDIDII ➔ 1325467
DDDD ➔ 54321
IIII ➔ 12345
I ➔	 12
D ➔	 21

Note that a sequence of n characters produces a number with n+1 digits, because the ‘I’ or
‘D’ represent the nature of the sequence from one number to the next.

Write the following function, which takes a string sequence and returns a string that
represents the minimum number without repeating any digits:

string decode(string seq);

Notes:

1. You must use a stack and / or a queue in your solution in a meaningful way.
2. For full credit, your solution should run in worst-case O(n) time (you can still

receive most of the points for a non-O(n) solution).
3. You should only use the digits 1-9 (not 0).
4. You may use the Stanford library function string integerToString(int i)

if you need to.
5. You do not need to #include any Stanford or Standard libraries (e.g., if you use a

stack or a queue, we will assume the appropriate libraries are included).
6. The minimum length of the input sequence will be one character, and the

maximum length of the input sequence string will be eight characters.

 Page 4 of 10

Please put your answer to question 2 here:

string decode(string seq) {

 // create a stack to hold the values
 Stack<int> s;

 // create a string for the result
 string result;

 // we need to iterate n+1 times
 for (int i=0; i <= (int)seq.length(); i++) {
 s.push(i+1);
 // if we have processed all characters or the character
 // is an 'I'
 if (i == (int)seq.length() || seq[i] == 'I') {
 // process the entire stack
 while (!s.isEmpty()) {
 // pop and add it to the solution
 result += integerToString(s.pop());
 }
 }
 }
 return result;
}

 Page 5 of 10

Question 3: Recursion Tracing (10 points)

For each of the calls to the following recursive function below, indicate what output
is produced:

void recursionMystery(int n) {
 if (n <= 1) {
 cout << "*";
 } else if (n == 2) {
 recursionMystery(n - 1);
 cout << "*";
 } else {
 cout << "(";
 recursionMystery(n - 2);
 cout << ")";
 }
}

Call Output (2 points each)

a) recursionMystery(2); **

b) recursionMystery (3); (*)

c) recursionMystery (4); (**)

d) recursionMystery (6); ((**))

e) recursionMystery (9); ((((*))))

 Page 6 of 10

Question 4: ADTs (12 points)

Consider the following function:

void collectionMystery(const Map<string, string>& m) {
 Set<string> s;
 for (string key : m) {
 if (m[key] != key) {
 s.add(m[key]);
 } else {
 s.remove(m[key]);
 }
 }
 cout << s << endl;
}

Note: remember that a map stores keys in order (e.g., “cat” is stored before “dog”).

Write the output produced by the function when passed each of the following maps:

Map Output (3 points each)

a) {"cast":"plaster", "house":"brick",
 "sheep":"wool", "wool":"wool"}

{"brick", "plaster"}

b) {"ball":"blue", "corn":"yellow",
 "emerald":"green", "grass":"green",
 "winkie":"yellow"}

{"blue", "green", "yellow"}

c) {"apple":"peach", "corn":"apple",
 "peach":"peach", "pie":"fruit",
 "potato":"peach"}

{"apple", "fruit", "peach"}

d) {"cat":"cat", "corgi":"dog",
 "emu":"animal", "lab":"lair",
 "lair":"lair", "nyan":"cat"}

{"animal", "cat", "dog"}

Note: For part (d), “crash” is

acceptable, because we were unclear
that you can attempt to remove from
an empty set without an error (the set
just doesn’t do anything).

We did not take off points for

having the output out of order, but we
did take points off for duplicate items
in the set.

 Page 7 of 10

Question 5: The Traveling Salesman Problem (15 points)

There is a famous problem in computer science and
mathematics called the Traveling Salesman Problem.
It is stated as follows:

“A salesman must visit n cities in a given area. Given
the list of cities and the distances between them, what
is the shortest possible route that visits each city
exactly once and returns to the original city?”

This problem is in the computational category called NP-Complete, which means that
there is no known way to find an efficient solution. That is the bad news. The good
news is that we have a method for finding all solutions to the problem (however
inefficient), and choosing the correct one: recursive backtracking!

Assume all cities are numbered from 0 to n-1, and you have a Grid<double>
distance where distance[r][c] is the distance between city r and city c. Here is
an example of a 4x4 grid with cities 0-3 (indexes in bold, distances in plain text):

The solution to the Traveling Salesman Problem starting
and ending at city 0 is:

0 -> 1 -> 3 -> 2 -> 0
for a total trip distance of 10 + 25 + 30 + 15 = 80

Write the following function, which returns a Vector<int> bestRoute of the best
possible route between the cities, which has the original city as its first element and its
last element, for a complete path:

Vector<int> bestRoute(Grid<double> &distance, int startCity);

You are allowed to create any helper functions you need, and your solution should
recursively check all possible paths between all cities, starting from the first city.

Notes:

1. You can assume you have access to the following function, which calculates
the total distance of a Vector<int> route:

double totalRouteDistance(Grid<double> &distance,
 Vector<int> &route);

2. You may use the constant DBL_MAX (the largest possible double) to indicate an
infinite distance.

 0 1 2 3
0 0 10 15 20

1 10 0 35 25
2 15 35 0 30
3 20 25 30 0

 Page 8 of 10

Please put your answer to question 5 here:

Vector<int> bestRoute(Grid<double> &distance, int startCity) {
 Vector<int> currentRoute;
 // add startCity to best
 currentRoute.add(startCity);
 Set<int> leftToVisit;

 // populate leftToVisit with cities;
 for (int i=0; i < distance.numCols(); i++) { // same as numRows()
 if (i != startCity) { // don't add start city
 leftToVisit.add(i);
 }
 }
 Vector<int> bestOverall;
 bestRouteHelper(distance, currentRoute, leftToVisit, bestOverall);
 return bestOverall;
}

void bestRouteHelper(Grid<double> &distance, Vector<int> ¤tRoute,
 Set<int> &leftToVisit, Vector<int> &bestOverall) {
 // base case
 if (leftToVisit.isEmpty()) {
 // add start city to end
 currentRoute.add(currentRoute[0]);

 double currentDist = totalRouteDistance(distance, currentRoute);
 double bestDist = totalRouteDistance(distance, bestOverall);

 if (bestOverall.isEmpty() || currentDist < bestDist) {
 bestOverall = currentRoute;
 }

 } else {

 for (int currentCity : leftToVisit) {
 // go through all remaining cities, removing one at a time

 Set<int> nextLeftToVisit = leftToVisit - currentCity;
 Vector<int> nextRoute = currentRoute;
 nextRoute += currentCity;

 // recursively calculate the best route with the new city
 bestRouteHelper(distance, nextRoute, nextLeftToVisit,
bestOverall);

 }

 }
}

 Page 9 of 10

Extra space for question 5:
(alternate solution)
Vector<int> bestRoute(Grid<double> &distance, int startCity) {
 Vector<int> currentRoute;
 // add startCity to best
 currentRoute.add(startCity);
 Vector<int> leftToVisit;

 // populate leftToVisit with cities;
 for (int i=0; i < distance.numCols(); i++) { // same as numRows()
 if (i != startCity) { // don't add start city
 leftToVisit += i;
 }
 }
 Vector<int> bestOverall;
 bestRoute(distance, currentRoute, leftToVisit, bestOverall);
 return bestOverall;
}

double bestRoute(Grid<double> &distance, Vector<int> ¤tRoute,
 Vector<int> &leftToVisit, Vector<int> &bestOverall) {
 double minDist;
 // base case
 if (leftToVisit.isEmpty()) {
 // return the current route's distance,
 // and consider this the best overall route
 minDist = totalRouteDistance(distance, currentRoute);
 bestOverall = currentRoute;

 // add start city to bestOverall
 int startCity = bestOverall[0];
 minDist += distance[bestOverall[bestOverall.size()-1]][startCity];
 bestOverall.add(startCity);
 } else {
 minDist = DBL_MAX;
 Vector<int> localBestRoute = bestOverall; // keep local best

 for (int i = 0; i < leftToVisit.size(); i++) {
 // go through all remaining cities, removing one at a time
 int currentCity = leftToVisit[i];
 // add it to the current route
 currentRoute.add(currentCity);

 // remove it from the cities we still have to visit
 leftToVisit.remove(i);

 // recursively calculate the best route with the new city
 double newDist = bestRoute(distance, currentRoute,
 leftToVisit, bestOverall);

 // update minDist and the best route
 if (newDist < minDist) {
 minDist = newDist;
 localBestRoute = bestOverall;
 }
 // backtrack:
 // replace the city in the cities we have to visit
 // and remove it from the current route
 leftToVisit.insert(i,currentCity);
 currentRoute.remove(currentRoute.size()-1);
 }
 // once we finish the loop, we have a best route
 bestOverall = localBestRoute;
 }
 return minDist;

}

 Page 10 of 10

------------total route distance func (did not have to write):
double totalRouteDistance(Grid<double> &distance, Vector<int> &route) {
 int routeSize = route.size();
 if (routeSize == 0) {
 return DBL_MAX;
 }
 double totalDistance = 0;
 for (int i=0; i < routeSize-1; i++) {
 int city1 = route[i];
 int city2 = route[i+1];
 totalDistance += distance[city1][city2];
 }
 return totalDistance;

}

