
 Page 1 of 10

CS106B

Sprint 2017 April 27th, 2017

CS106B Practice Midterm (KEY)
	

This is an open-note, open-book exam. You can refer to any course handouts, textbooks,
handwritten lecture notes, and printouts of any code relevant to any CS106B assignment.
You may not use any laptops, cell phones, or internet devices of any sort. You will be
graded on functionality—but good style helps graders understand what you were
attempting. You do not need to #include any libraries and you do not need to forward
declare any functions. You have 2 hours. We hope this exam is an exciting journey.

Last Name: _____________________

First Name: _____________________

Sunet ID (eg jdoe): _____________________

Section Leader: _____________________

I accept the letter and spirit of the honor code. I’ve neither given nor received aid on
this exam. I pledge to write more neatly than I ever have in my entire life.

 (signed) ___
	

	

	 	 	 	Score	 		Grader	

1.	Tracing	Functions	 [15]	 ______		 ______	

2.	Blammo	 [15]	 ______		 ______	

3.	Grade	Histogram	 [15]	 ______		 ______	

4.	Autonomous	Art	 [15]	 ______		 ______	

	
Total	 [60]	 ______		 ______	

	

 Page 2 of 10

Question 1: Tracing and Big O (15 Points)

Assume that the following mystery and enigma functions have be defined as follows:

int mystery(int n) {
 if (n == 0) {
 return 0;
 } else {
 return mystery(n-1) + enigma(n) + enigma(n);
 }
}

int enigma(int n) {
 int index = 0;
 int sum = 0;
 while (index < 2*n) {
 sum++;
 index++;
 }
 return sum;
}

a. [2 Points] What is the value of enigma(2)?

Your answer does not need to be simplified (e.g. 1 + 12 + 23 is an
acceptable form for an answer).

4

b. [4 Points] What is the value of mystery(3)?

Again, your answer does not need to be simplified.

2*(2*3 + 2*2 + 2*1) + 0 = 24 

c. [4 Points] What is the worst case runtime of enigma expressed in big-O
notation, where N is the value of the argument n?

You may assume that n is a nonnegative integer.

O(n)

d. [5 Points] What is the worst case runtime of mystery expressed in big-O
notation, where N is the value of the argument n?

You may assume that n is a nonnegative integer. O(n2)

 Page 3 of 10

Question 2: Blammo (15 Points)

This problem is about a board game called Blamo, a game in which players take turns
placing tiles on a grid and getting points based on the length of horizontal and vertical
chains formed by each move. For instance, the following is a possible state of the
Blamo board (where X indicates the location of a tile):

A move involves placing a single tile on the board. The score of that move is equal to
the sum of the lengths of the horizontal and the vertical chains of tiles that are adjacent
to the tile placed. For example, consider a move consisting of placing a tile in the
shaded cell of the board below:

This move would be worth 5 points: 4 from the horizontal chain of 4 tiles, and 1 from
the vertical chain of 1 tile. A better move to make would be this:

 Page 4 of 10

This move is worth 6 points: 3 for the vertical chain of 3 tiles, and 3 for the horizontal
chain of 3 tiles.

Your job is to write the following function, which calculates the score associated with a
valid move:

int computeScore(Grid<bool>&board, int row, int col);

which takes as input board which represents the state of a Blamo board,
and row and col which corresponds to the location of the move on board. The
function computeScore() calculates the score of a Blamo move consisting of placing a
single tile on the board at the position (row,col) board represents the state of the Blamo
board such that:

• board[y][x] (where x and y are integers) is true if there is a tile at row y and
column x of board and false if if there is a not a tile there.

row and col represent the position on board that a tile was placed. You may
assume row and col are within the bounds of board.

 Page 5 of 10

Please put your answer to question 2 here:

int computeScore(Grid<bool>&board, int row, int col) {
 for (int dRow = -1; dRow <= 1; dRow++) {
 for (int dCol = -1; dCol <= 1; dCol++) {
 if (abs(dRow) + abs(dCol) == 2 ||
 (dRow == 0 && dCol == 0)) continue;
 int currRow = row + dRow;
 int currCol = col + dCol;
 while (board.inBounds(currRow,currCol) &&
 board[currRow][currCol]) {
 currRow += dRow;
 currCol += dCol;
 score++;

 }
 }
 }
 return score;
}

Notes: It isn't clear from the problem whether or not the
board[row][col] is true or false (i.e. whether or not the move
has already been made) – students are welcome to make either
assumption as long as they are consistent.

 Page 6 of 10

Question 3: Grade Distribution Histogram (15 points)

A common way to visualize how a class of students perform on exams is by using a
histogram, which provides an estimate of the probability distribution of the grades for
the exam. For example, given the following scores on an exam, we can draw the
histogram (shown to the right), which represents how many students received grades in
the 60s, 70s, 80s, and 90s.

Student Grade
StudentA 97
studentB 89
studentC 93
studentD 75
studentE 94
studentF 85
studentG 88
studentH 68
studentI 79
studentJ 84

A histogram can also be used to determine the distribution of grades for an entire
quarter, based on an average of each student’s grades.

Consider the following map which associates student names with a vector of their
grades for the quarter. We would like to produce a histogram of student averages. In
other words, average each student’s grades, then produce a histogram of the averages.
The histogram for the averages is shown to the right:

Given a map of student names (strings) as keys, and a vector (ints) to each student’s
scores, your job is to write the following three functions:

Student Grade Average
studentA 97, 92, 88 92.3

studentB 89, 93, 77 86.3
studentC 93, 95, 105 97.7
studentD 75, 25, 50 50
studentE 94, 94, 94 94
studentF 85, 82, 73 80
studentG 88, 91, 99 92.7
studentH 68, 78, 88 78
studentI 79, 85, 77 80.3
studentJ 84, 85, 86 85

Histogram:
60s: *
70s: **
80s: ****
90s: ***

Histogram of Averages:
50s: *
70s: *
80s: ****
90s: ****

 Page 7 of 10

[4 points]
// Returns the average value of a vector of integers.
// Assumes there is at least one grade.
double average(Vector<int> & gradeVec) {

 // assumption: there is at least one grade
 double sum = 0;
 for (int grade : gradeVec) {
 sum += grade;
 }
 return sum / gradeVec.size();

}

[7 points]
// Produce a map of average grade distributions, grouped by
// tens (e.g., if 8 people scored an average in the 90s, there
// would be a key in the map for 90, and its value would be 8)
void histogram(Map<string,Vector<int>> & grades,
 Map<int,int> & hist) {

 for (string key : grades) {
 int avg = (int)(average(grades[key]))/10 * 10;
 hist[avg]++;
 }

}

 Page 8 of 10

Question 3: Grade Distribution Histogram (continued)

[4 points]
// Print a histogram in the following form:
// 50s:***
// 60s:*****
// 70s:**
// 80s:***
// 90s:******
//
// For the example above, the map holds the
// following key/value pairs: {50:3, 60:5, 70:2, 80:3, 90:6}
// Assume that keys and values are positive and that keys are
// multiples of ten.
void printHistogram(Map<int,int> & hist) {

 // print the grade then a line of asterisks for the total
 for (int key : hist) {
 cout << key << "s:";
 for (int i=0; i < hist[key]; i++) {
 cout << "*";
 }
 cout << endl;
 }

}

 Page 9 of 10

Question 4: Autonomous Art (15 points)

If we could generate all images presumably we would recreate the Mona Lisa and
generate novel artwork!

Write a function genImages that generates and saves all possible images of a given
width and height using a fixed palette of colors.

As an example, for a picture that is 2 pixels by 2 pixels made up of colors light-grey
and dark-grey there are 16 possible images. Here are all 16 possibilities:

Each picture is represented as a Grid<int>.

The input to your genImages function is the target size of the image (the number of
rows and columns in the underlying grid) and a vector which contains all colors that
can be used in the picture.

Your function should work for any positive grid dimensions (rows and cols) and any
vector of colors with size greater than 0.

Your function should save each image using a call to a helper method saveImage that
we provide and that you don’t have to write:

void saveImage(Grid<int> & image);

Hint: The color of each pixel is a decision. Come up with a recursive helper function
that can explore all possible combinations of decisions.

 Page 10 of 10

// note: there are many different ways to solve this problem.
void genImages(Vector<int>& colors, int rows, int cols){
 Grid<int> image(rows,cols);
 genHelper(image, colors, 0);
}

void genHelper(Grid<int>& image,
 Vector<int>& colors, int next) {

 // base case, all colored
 if (next == image.numRows() * image.numCols()) {
 saveImage(image);
 return;
 }
 // recursive case, if not finished
 int row = next / image.numCols();
 int col = next % image.numCols();

 for (int color : colors) {
 image[row][col] = color;
 genHelper(image, colors, next + 1);
 }
}

// another possible solution:
void genImages(Vector<int>& colors, int rows, int cols){
 Grid<int> image(rows,cols);
 genHelper(image, colors, 0, 0);
}

void genImagesHelper(Grid<int> &image,
 Vector<int>& colors,
 int currRow, int currCol) {

 // base case: reached end of rows = done
 if (currRow = grid.numRows()) {
 saveImage(image);
 } else if (currCol == grid.numCols()) {
 // recursive case: go to next row
 genImagesHelper(image, colors, currRow+1, 0);
 } else {
 for (int c : colors) {
 image[currRow][currCol] = c;
 genImagesHelper(image, colors, currRow, currCol + 1);
 }
}

