
 1 #include <iostream>
 2 #include "console.h"
 3 #include "basicgraph.h"
 4 #include "simpio.h"
 5 #include "set.h"
 6 #include "priorityqueue.h"
 7 #include "gwindow.h"
 8 #include "gobjects.h"
 9 #include "random.h"
 10 #include "map.h"
 11 #include <cmath>
 12
 13 using namespace std;
 14
 15 const bool GRID_GRAPH = true;
 16
 17 void kruskal(BasicGraph &graph, BasicGraph &mst);
 18 void drawGraph(GWindow &gw, BasicGraph &graph, string title);
 19 void adjustWindows(GWindow &gw1,GWindow &gw2);
 20 void populateGraph(BasicGraph &graph,bool randomVerts = false);
 21
 22 int main() {
 23 // create two windows and stack them horizontally
 24 GWindow gwOrig,gwMst;
 25
 26 // adjust the windows to make them look nice
 27 adjustWindows(gwOrig,gwMst);
 28
 29 BasicGraph graph;
 30 string response = getLine("Do you want a random graph? (y/n)");
 31 if (response.size() > 0 && response[0] == 'y') {
 32 populateGraph(graph,true);
 33 } else {
 34 populateGraph(graph,false);
 35 }
 36
 37 drawGraph(gwOrig,graph,"Original");
 38
 39 BasicGraph mst;
 40 kruskal(graph,mst);
 41 drawGraph(gwMst, mst, "Minimum Spanning Tree");
 42
 43 return 0;
 44 }
 45

 46 void kruskal(BasicGraph& graph, BasicGraph &mst) {
 47 // first, copy the graph and remove the edges
 48 // This is so we can populate it later with the mst edges
 49 mst = graph;
 50 mst.clearEdges();
 51 // put each vertex into a 'cluster', initially containing only itself
 52 Map<Vertex*, Set<Vertex*>* > clusters;
 53 Set<Vertex*> allVertices = graph.getVertexSet();
 54 Vector<Set<Vertex*>* > allSets; // for freeing later
 55 for (Vertex* v : allVertices) {
 56 Set<Vertex*>* set = new Set<Vertex*>();
 57 set->add(v);
 58 clusters[v] = set;
 59 allSets.add(set);
 60 }
 61
 62 // put all edges into a priority queue, sorted by weight
 63 PriorityQueue<Edge*> pq;
 64 Set<Edge*> allEdges = graph.getEdgeSet();
 65 for (Edge* edge : allEdges) {
 66 pq.enqueue(edge, edge->cost);
 67 }
 68
 69 // repeatedly pull min-weight edge out of PQ and add it to MST if its
 70 // endpoints are not already connected
 71 Set<Edge*> mstEdges;
 72 while (!pq.isEmpty()) {
 73 Edge* e = pq.dequeue();
 74 Set<Vertex*>* set1 = clusters[e->start];
 75 Set<Vertex*>* set2 = clusters[e->finish];
 76 if (set1 != set2) {
 77 mstEdges.add(e);
 78
 79 // merge the two sets
 80 set1->addAll(*set2);
 81 for (Vertex* v : *set1) {
 82 Set<Vertex*>* setv = clusters[v];
 83 if (setv != set1) {
 84 clusters[v] = set1;
 85 }
 86 }
 87 }
 88 }
 89
 90 for (Set<Vertex*>* set : allSets) {
 91 delete set;
 92 }
 93
 94 // populate the graph with the edges
 95 // We can't add the edge pointers directly
 96 // because that would cause trouble freeing later
 97 for (Edge *edge : mstEdges) {
 98 mst.addEdge(edge->start->name,edge->end->name,edge->cost,false);
 99 }
100 }
101

102 void drawGraph(GWindow &gw, BasicGraph &graph,string title) {
103 // always start with the same random seed
104 // so we always get the same drawing for the same
105 // vertices
106 if (!GRID_GRAPH) {
107 setRandomSeed(1234);
108 }
109 // place the title there
110 gw.setTitle(title);
111 Map<Vertex*,GPoint> vertexLocations;
112 int vertCount = 0; // for the grid
113 for (Vertex *vert : graph.getVertexSet()) {
114 int x,y;
115
116 if (!GRID_GRAPH) {
117 // randomly locate vertex on graph
118 x = randomInteger(5,gw.getWidth()-6);
119 y = randomInteger(5,gw.getHeight()-6);
120 } else {
121 // put in a staggerd grid
122 const int NUMCOLS = 3;
123 int widthApart = gw.getWidth() / (NUMCOLS + 1) - 10; // make a bit smaller for screen size
124 int heightApart = gw.getHeight() / 6; // could fix this
125 x = (widthApart + ((vertCount % NUMCOLS) + (vertCount / NUMCOLS)) * widthApart);
126 y = ((vertCount / NUMCOLS + 1 + vertCount) * heightApart);
127 }
128 GPoint p(x,y);
129 vertexLocations.add(vert,p);
130 // place a dot there
131 gw.fillOval(x,y,10,10);
132
133 // place a label
134 GLabel *gl = new GLabel(vert->name);
135 gl->setFont("SansSerif-28");
136 gw.add(gl,p.getX(),p.getY());
137 vertCount++;
138 }
139
140 Set<Set<string>>seenAlready;
141 for (Edge *edge : graph.getEdgeSet()) {
142 Set<string>sortedEdgeSet;
143 sortedEdgeSet.add(edge->start->name);
144 sortedEdgeSet.add(edge->end->name);
145
146 if (!seenAlready.contains(sortedEdgeSet)) {
147 GPoint startPoint = vertexLocations[edge->start];
148 GPoint endPoint = vertexLocations[edge->end];
149 gw.drawLine(startPoint,endPoint);
150
151 // find the 1/3 point of the line (midpoint would have many
152 // overlapping points for the grid)
153 int avgX = abs((startPoint.getX()*2 + endPoint.getX())/3.0);
154 int avgY = abs((startPoint.getY()*2 + endPoint.getY())/3.0);
155 GLabel *gl = new GLabel(doubleToString(edge->cost));
156 gl->setFont("SansSerif-28");
157 gw.add(gl,avgX,avgY);
158 // add an unambiguous edge to seenAlready
159 // so we don't put same undirected edge in twice
160 seenAlready.add(sortedEdgeSet);
161 }
162 }
163 }
164

165 void adjustWindows(GWindow &gw1,GWindow &gw2) {
166 gw1.setSize(600,700);
167 gw2.setSize(600,700);
168 gw1.repaint();
169 gw2.setLocation(gw1.getLocation().getX()+gw1.getCanvasWidth(),
170 gw1.getLocation().getY());
171 }
172
173 void populateGraph(BasicGraph &graph, bool randomVerts) {
174 if (!randomVerts) {
175 // add some vertices and edges
176 for (int i=0; i < 5; i++) {
177 Vertex *v = new Vertex("" + charToString(i+'a'));
178 graph.addVertex(v);
179 }
180
181 // add some edges with weights
182 graph.addEdge("a","b",9,false);
183 graph.addEdge("a","c",75,false);
184 graph.addEdge("b","c",95,false);
185 graph.addEdge("b","d",19,false);
186 graph.addEdge("b","e",42,false);
187 graph.addEdge("c","d",51,false);
188 graph.addEdge("d","e",31,false);
189 } else {
190 // add 10 vertices
191 for (int i=0; i < 10; i++) {
192 Vertex *v = new Vertex("" + charToString(i+'a'));
193 graph.addVertex(v);
194 }
195 // for each vertex, add up to three random edges
196 Vector<Vertex *> allVerts;
197 for (Vertex *v : graph.getVertexSet()) {
198 allVerts.add(v);
199 }
200 for (Vertex *v : graph.getVertexSet()) {
201 Set<Vertex *>usedAlready;
202 usedAlready.add(v); // don't use yourself
203 for (int i=0;i<3;i++) {
204 int vertIndex = randomInteger(0,graph.size()-1);
205 if (usedAlready.contains(allVerts[vertIndex])) {
206 continue; // ignore
207 }
208 Vertex *second = allVerts[vertIndex];
209 // get a random cost
210 int cost = randomInteger(1,100);
211 // create an edge
212 graph.addEdge(v,second,cost);
213 usedAlready.add(second);
214 }
215 }
216 }
217 }
218

