O~k WN

BB PR BEPRPRWWWWWWWWWWNNONNNMNMNOMNMOMNOMNNNRERRRRRRERRRRE
M WNRFRPROWVWONOONTULTEEWNEFRFOWVWONONUIEBEWNRFROWVWONOULE WNEFE OV

#include <iostream>
#include "console.h"
#include "basicgraph.h"
#include "simpio.h"
#include "set.h"
#include "priorityqueue.h"
#include "gwindow.h"
#include "gobjects.h"
#include "random.h"
#include "map.h"
#include <cmath>

using namespace std;
const bool GRID GRAPH = true;
void kruskal(BasicGraph &graph, BasicGraph &mst);

void drawGraph(GWindow &gw, BasicGraph &graph, string title);
void adjustWindows (GWindow &gwl,GWindow &gw2);

void populateGraph(BasicGraph &graph,bool randomverts = false);

int main() {
// create two windows and stack them horizontally
GWindow gwOrig,gwMst;

// adjust the windows to make them look nice
adjustWindows (gwOrig,gwMst);

BasicGraph graph;

string response = getLine("Do you want a random graph? (y/n)");

if (response.size() > 0 && response[0] == 'y') {
populateGraph(graph,true);
} else {

populateGraph(graph,false);
}

drawGraph (gwOrig,graph, "Original");
BasicGraph mst;
kruskal (graph,mst);

drawGraph (gwMst, mst, "Minimum Spanning Tree");

return 0;



46 void kruskal(BasicGraph& graph, BasicGraph &mst) {

47 // first, copy the graph and remove the edges

48 // This is so we can populate it later with the mst edges
49 mst = graph;

50 mst.clearEdges();

51 // put each vertex into a 'cluster', initially containing only itself
52 Map<Vertex*, Set<Vertex*>* > clusters;

53 Set<Vertex*> allVertices = graph.getVertexSet();

54 Vector<Set<Vertex*>* > allSets; // for freeing later
55 for (Vertex* v : allvVertices) {

56 Set<Vertex*>* set = new Set<Vertex*>();

57 set->add(v);

58 clusters[v] = set;

59 allSets.add(set);

60 }

61

62 // put all edges into a priority queue, sorted by weight
63 PriorityQueue<Edge*> pq;

64 Set<Edge*> allEdges = graph.getEdgeSet();

65 for (Edge* edge : allEdges) {

66 pg.enqueue (edge, edge->cost);

67 }

68

69 // repeatedly pull min-weight edge out of PQ and add it to MST if its
70 // endpoints are not already connected

71 Set<Edge*> mstEdges;

72 while (!pg.isEmpty()) {

73 Edge* e = pg.dequeue();

74 Set<Vertex*>* setl = clusters[e->start];

75 Set<Vertex*>* set2 = clusters[e->finish];

76 if (setl != set2) {

77 mstEdges.add(e);

78

79 // merge the two sets

80 setl->addAll (*set2);

81 for (Vertex* v : *setl) {

82 Set<Vertex*>* setv = clusters[v];

83 if (setv != setl) {

84 clusters[v] = setl;

85 }

86 }

87 }

88 }

89

90 for (Set<Vertex*>* set : allSets) {

91 delete set;

92 }

93

94 // populate the graph with the edges

95 // We can't add the edge pointers directly

96 // because that would cause trouble freeing later

97 for (Edge *edge : mstEdges) {

98 mst.addEdge (edge->start->name,edge->end->name,edge->cost,false);
99 }

100 }

101



102 void drawGraph(GWindow &gw, BasicGraph &graph,string title) {

103 // always start with the same random seed

104 // so we always get the same drawing for the same

105 // vertices

106 if (!GRID GRAPH) {

107 setRandomSeed(1234);

108

109 // place the title there

110 gw.setTitle(title);

111 Map<Vertex*,GPoint> vertexLocations;

112 int vertCount = 0; // for the grid

113 for (Vertex *vert : graph.getVertexSet()) {

114 int x,y;

115

116 if (!GRID GRAPH) {

117 // randomly locate vertex on graph

118 X = randomInteger(5,gw.getWidth()-6);

119 y = randomInteger(5,gw.getHeight()-6);

120 } else {

121 // put in a staggerd grid

122 const int NUMCOLS = 3;

123 int widthApart = gw.getWidth() / (NUMCOLS + 1) - 10; // make a bit smaller for scre
124 int heightApart = gw.getHeight() / 6; // could fix this
125 x = (widthApart + ((vertCount % NUMCOLS) + (vertCount / NUMCOLS)) * widthApart);
126 y = ((vertCount / NUMCOLS + 1 + vertCount) * heightApart);
127 }

128 GPoint p(x,Y);

129 vertexLocations.add(vert,p);

130 // place a dot there

131 gw.fillOval(x,y,10,10);

132

133 // place a label

134 GLabel *gl = new GLabel(vert->name);

135 gl->setFont("SansSerif-28");

136 gw.add(gl,p.getX(),p.get¥Y());

137 vertCount++;

138 }

139

140 Set<Set<string>>seenAlready;

141 for (Edge *edge : graph.getEdgeSet()) {

142 Set<string>sortedEdgeSet;

143 sortedEdgeSet.add(edge->start->name);

144 sortedEdgeSet.add(edge->end->name) ;

145

146 if (!seenAlready.contains(sortedEdgeSet)) {

147 GPoint startPoint = vertexLocations[edge->start];

148 GPoint endPoint = vertexLocations[edge->end];

149 gw.drawLine(startPoint,endPoint);

150

151 // find the 1/3 point of the line (midpoint would have many
152 // overlapping points for the grid)

153 int avgX = abs((startPoint.getX()*2 + endPoint.getX())/3.0);
154 int avgY = abs((startPoint.getY()*2 + endPoint.get¥Y())/3.0);
155 GLabel *gl = new GLabel (doubleToString(edge->cost));
156 gl->setFont("SansSerif-28");

157 gw.add(gl,avgX,avgy);

158 // add an unambiguous edge to seenAlready

159 // so we don't put same undirected edge in twice

160 seenAlready.add(sortedEdgeSet);

161 }

162 }

163 }

164



165 void adjustWindows (GWindow &gwl,GWindow &gw2) {

166 gwl.setSize(600,700);

167 gw2.setSize(600,700);

168 gwl.repaint();

169 gw2.setLocation(gwl.getLocation().getX()+gwl.getCanvasWidth(),
170 gwl.getLocation().getY());

171 }

172

173 void populateGraph(BasicGraph &graph, bool randomVerts) {
174 if (!randomverts) {

175 // add some vertices and edges

176 for (int i=0; i < 5; i++) {

177 Vertex *v = new Vertex("" + charToString(i+'a'));
178 graph.addvVertex(v);

179 }

180

181 // add some edges with weights

182 graph.addEdge("a","b",9,false);

183 graph.addEdge("a","c",75,false);

184 graph.addEdge("b","c",95,false);

185 graph.addEdge("b","d",19,false);

186 graph.addEdge("b","e",42,false);

187 graph.addEdge("c","d",51,false);

188 graph.addEdge("d","e",31,false);

189 } else {

190 // add 10 vertices

191 for (int i=0; i < 10; i++) {

192 Vertex *v = new Vertex("" + charToString(i+'a'));
193 graph.addVertex(v);

194 }

195 // for each vertex, add up to three random edges
196 Vector<Vertex *> allVerts;

197 for (Vertex *v : graph.getVertexSet()) {

198 allVerts.add(v);

199 }

200 for (Vertex *v : graph.getVertexSet()) {

201 Set<Vertex *>usedAlready;

202 usedAlready.add(v); // don't use yourself
203 for (int i=0;i<3;i++) {

204 int vertIndex = randomInteger(0,graph.size()-1);
205 if (usedAlready.contains(allVerts[vertIndex])) {
206 continue; // ignore

207 }

208 Vertex *second = allVerts[vertIndex];

209 // get a random cost

210 int cost = randomInteger(1,100);

211 // create an edge

212 graph.addEdge(v,second,cost);

213 usedAlready.add(second);

214 }

215 }

216 }

217 }

218



