
 1 /* Employee.h
 2 * CS 106B, Marty Stepp
 3 * This file declares the Employee class, the parent (base) class in
 4 * our inheritance hierarchy.
 5 */
 6
 7 #pragma once
 8
 9 #include <string>
 10 using namespace std;
 11
 12 // A class to represent employees in general.
 13 class Employee {
 14 public:
 15 Employee(string name, int years);
 16 virtual int hours() const;
 17 virtual string name() const;
 18 virtual double salary() const;
 19 virtual int vacationDays() const;
 20 virtual string vacationForm() const;
 21 virtual int years() const;
 22 // virtual string getFavoritePokemon() = 0;
 23
 24 private:
 25 string myName;
 26 int myYears;
 27 };
 28
  

 29 /* Employee.cpp
 30 * CS 106B, Marty Stepp
 31 * This file implements the members of the Employee class, the parent (base)
 32 * class in our inheritance hierarchy.
 33 */
 34
 35 #include "Employee.h"
 36
 37 Employee::Employee(string name, int years) {
 38 myName = name;
 39 myYears = years;
 40 }
 41
 42 int Employee::hours() const {
 43 return 40;
 44 }
 45
 46 string Employee::name() const {
 47 return myName;
 48 }
 49
 50 double Employee::salary() const {
 51 return 50000.0 + (500 * myYears);
 52 }
 53
 54 int Employee::vacationDays() const {
 55 return 10;
 56 }
 57
 58 string Employee::vacationForm() const {
 59 return "yellow";
 60 }
 61
 62 int Employee::years() const {
 63 return myYears;
 64 }
 65
  

 66 /* Lawyer.h
 67 * CS 106B, Marty Stepp
 68 * This file declares the Lawyer class, a subclass
 69 * (child class, derived class) in our inheritance hierarchy.
 70 */
 71
 72 #pragma once
 73
 74 #include "Employee.h"
 75 #include <string>
 76
 77 // Employee edna("Edna Smith", 5);
 78 // Lawyer lisa("Lisa Fiedler", "Stanford", 7);
 79 // lisa.salary()
 80
 81 class Lawyer : public Employee {
 82 // I now have an hours, name, salary, etc. method. yay!
 83 public:
 84 Lawyer(string name, string lawSchool, int years);
 85 virtual double salary() const;
 86 void sue(string person);
 87
 88 private:
 89 string myLawSchool;
 90 };
 91
 92 ———
 93
 94 /* Lawyer.cpp
 95 * CS 106B, Marty Stepp
 96 * This file implements the members of the Lawyer class, a subclass
 97 * (child class, derived class) in our inheritance hierarchy.
 98 */
 99
100 #include <iostream>
101 #include "Lawyer.h"
102
103 // call the constructor of Employee superclass?
104 Lawyer::Lawyer(string name, string lawSchool, int years)
105 : Employee(name, years) {
106 myLawSchool = lawSchool;
107 }
108
109 // overriding: replace version from Employee class
110 double Lawyer::salary() const {
111 return Employee::salary() * 2;
112 }
113
114 void Lawyer::sue(string person) {
115 cout << "See you in court, " << person << endl;
116 }
  

117 /* Programmer.h
118 * CS 106B, Marty Stepp
119 * This file declares the Programmer class, a subclass
120 * (child class, derived class) in our inheritance hierarchy.
121 */
122
123 #pragma once
124
125 #include "Employee.h"
126
127 class Programmer : public Employee {
128 public:
129 Programmer(string name, int years);
130 virtual string vacationForm() const;
131 virtual void code();
132 };
133
134
135 ———
136
137 /* Programmer.cpp
138 * CS 106B, Marty Stepp
139 * This file implements the members of the Programmer class, a subclass
140 * (child class, derived class) in our inheritance hierarchy.
141 */
142
143 #include <iostream>
144 #include "Programmer.h"
145
146 Programmer::Programmer(string name, int years) : Employee(name, years) {}
147
148 string Programmer::vacationForm() const {
149 return "pink";
150 }
151
152 void Programmer::code() {
153 cout << "I'm coding up a storm!" << endl;
154 }
155
  

156 /* polymorphism.h
157 * CS 106B, Marty Stepp
158 * This file declares several classes in an inheritance hierarchy.
159 * We write the method implementations in the .h file for brevity
160 * rather than separating it into a .h and .cpp.
161 */
162
163 #pragma once
164
165 #include <iostream>
166 using namespace std;
167
168 class Snow {
169 public:
170 virtual void method2() {
171 cout << "Snow 2" << endl;
172 }
173
174 void method3() {
175 cout << "Snow 3" << endl;
176 }
177 };
178
179 class Rain : public Snow {
180 public:
181 virtual void method1() {
182 cout << "Rain 1" << endl;
183 }
184
185 virtual void method2() {
186 cout << "Rain 2" << endl;
187 }
188 };
189
190 class Sleet : public Snow {
191 public:
192 virtual void method2() {
193 cout << "Sleet 2" << endl;
194 Snow::method2();
195 method3();
196 }
197
198 void method3() {
199 cout << "Sleet 3" << endl;
200 }
201 };
202
203 class Fog : public Sleet {
204 public:
205 virtual void method1() {
206 cout << "Fog 1" << endl;
207 }
208
209 void method3() {
210 cout << "Fog 3" << endl;
211 }
212 };

213 /* polymorphism.cpp
214 * CS 106B, Marty Stepp
215 * This client program creates several variables of the classes in our
216 * inheritance hierarchy and then calls methods on them.
217 */
218
219 #include <iostream>
220 #include "console.h"
221 #include "polymorphism.h"
222 #include "simpio.h"
223 using namespace std;
224
225 int main() {
226 int choice = -1;
227 while (choice != 0) {
228 choice = getInteger("Example to run (1-7, 0 to quit): ");
229

230 if (choice == 1) {
231 // Example 1
232 cout << "Example 1:" << endl;
233 Snow* var1 = new Sleet();
234 var1->method2();
235
236 cout << endl;
237 }
238
239 if (choice == 2) {
240 // Example 2
241 cout << "Example 2:" << endl;
242 Snow* var2 = new Rain();
243 //var2->method1();
244
245 cout << endl;
246 }
247
248 if (choice == 3) {
249 // Example 3
250 cout << "Example 3:" << endl;
251 Snow* var3 = new Rain();
252 var3->method2();
253
254 cout << endl;
255 }
256

257 if (choice == 4) {
258 // Example 4
259 cout << "Example 4:" << endl;
260 Snow* var4 = new Rain();
261 ((Rain*) var4)->method1();
262
263 cout << endl;
264 }
265
266 if (choice == 5) {
267 // Example 5
268 cout << "Example 5:" << endl;
269 Snow* var5 = new Fog();
270 // ((Sleet*) var5)->method1();
271
272 cout << endl;
273 }
274
275 if (choice == 6) {
276 // Example 6
277 cout << "Example 6:" << endl;
278 Snow* var6 = new Sleet();
279 //((Rain*) var6)->method4();
280
281 cout << endl;
282 }
283
284 if (choice == 7) {
285 // Example 7
286 cout << "Example 7:" << endl;
287 Snow* var7 = new Sleet();
288 ((Rain*) var7)->method1();
289
290 cout << endl;
291 }  

292 cout << "Finished Example " << choice << endl << endl;
293 }
294 cout << "Done! Exiting." << endl;
295 return 0;
296 }

