1 /* Employee.h

2 * CS 106B, Marty Stepp

3 * This file declares the Employee class, the parent (base) class in
4 * our inheritance hierarchy.

5 x/

6

7 #pragma once

8

9 #include <string>

10 using namespace std;

11

12 // A class to represent employees in general.
13 class Employee {

14 public:

15 Employee(string name, int years);

16 virtual int hours() const;

17 virtual string name() const;

18 virtual double salary() const;

19 virtual int vacationDays() const;
20 virtual string vacationForm() const;
21 virtual int years() const;
22 // virtual string getFavoritePokemon() = 0;
23

24 private:

25 string myName;
26 int myYears;
27 };

28
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/* Employee.cpp

* CS 106B, Marty Stepp

* This file implements the members of the Employee class, the parent (base)
* class in our inheritance hierarchy.

*/
#include "Employee.h"

Employee: :Employee(string name, int years) {
myName = namej;
myYears = years;

}

int Employee::hours() const {
return 40;

}

string Employee::name() const {
return myName;

double Employee::salary() const {
return 50000.0 + (500 * myYears);

}

int Employee::vacationDays() const {
return 10;

}

string Employee::vacationForm() const {
return "yellow";

}

int Employee::years() const {
return myYears;
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/* Lawyer.h
* CS 106B, Marty Stepp
* This file declares the Lawyer class, a subclass
(child class, derived class) in our inheritance hierarchy.

*/
#pragma once

#include "Employee.h"
#include <string>

// Employee edna("Edna Smith", 5);
// Lawyer lisa("Lisa Fiedler", "Stanford", 7);
// lisa.salary()

class Lawyer : public Employee {
// I now have an hours, name, salary, etc. method. yay!
public:
Lawyer (string name, string lawSchool, int years);
virtual double salary() const;
void sue(string person);

private:
string myLawSchool;

}i

/* Lawyer.cpp

* CS 106B, Marty Stepp

* This file implements the members of the Lawyer class, a subclass
(child class, derived class) in our inheritance hierarchy.

*/

#include <iostream>
#include "Lawyer.h"

// call the constructor of Employee superclass?
Lawyer::Lawyer(string name, string lawSchool, int years)
Employee(name, years) {
myLawSchool = lawSchool;

}

// overriding: replace version from Employee class
double Lawyer::salary() const {
return Employee::salary() * 2;

}

void Lawyer::sue(string person) {
cout << "See you in court, " << person << endl;

}
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/* Programmer.h
* CS 106B, Marty Stepp
* This file declares the Programmer class, a subclass
(child class, derived class) in our inheritance hierarchy.

*/
#pragma once
#include "Employee.h"

class Programmer : public Employee {
public:
Programmer (string name, int years);
virtual string vacationForm() const;
virtual void code();

/* Programmer.cpp

CS 106B, Marty Stepp

* This file implements the members of the Programmer class, a subclass
* (child class, derived class) in our inheritance hierarchy.

*/

*

#include <iostream>
#include "Programmer.h"

Programmer: :Programmer (string name, int years) : Employee(name, years) {}
string Programmer::vacationForm() const {
return "pink";

}

void Programmer::code() {
cout << "I'm coding up a storm!" << endl;



156 /* polymorphism.h

157 * CS 106B, Marty Stepp

158 * This file declares several classes in an inheritance hierarchy.
159 * We write the method implementations in the .h file for brevity
160 * rather than separating it into a .h and .cpp.

161 */

162

163 #pragma once
164

165 #include <iostream>
166 using namespace std;

167

168 class Snow {

169 public:

170 virtual void method2() {

171 cout << "Snow 2" << endl;
172 }

173

174 void method3() {

175 cout << "Snow 3" << endl;
176 }

177 };

178

179 class Rain : public Snow {

180 public:

181 virtual void methodl() {

182 cout << "Rain 1" << endl;
183 }

184

185 virtual void method2() {

186 cout << "Rain 2" << endl;
187 }

188 };

189

190 class Sleet : public Snow {

191 public:

192 virtual void method2() {

193 cout << "Sleet 2" << endl;
194 Snow: :method2();

195 method3();

196 }

197

198 void method3() {

199 cout << "Sleet 3" << endl;
200 }

201 };

202

203 class Fog : public Sleet {

204 public:

205 virtual void methodl() {

206 cout << "Fog 1" << endl;
207 }

208

209 void method3 () {

210 cout << "Fog 3" << endl;
211 }

212 };
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polymorphism.cpp
* CS 106B, Marty Stepp

* This client program creates several variables of the classes in our
* inheritance hierarchy and then calls methods on them.

*/
#include <iostream>
#include "console.h"
#include "polymorphism.h"
#include "simpio.h"

using namespace std;

int main() {
int choice = -1;
while (choice != 0) {
choice = getInteger("Example to run (1-7, 0 to quit):
if (choice == 1) { 257 if
// Example 1 258
cout << "Example 1l:" << endl; 259
Snow* varl = new Sleet(); 260
varl->method2(); 261
262
cout << endl; 263
} 264 }
265
if (choice == 2) { 266 if
// Example 2 267
cout << "Example 2:" << endl; 268
Snow* var2 = new Rain(); 269
//var2->methodl(); 270
271
cout << endl; 272
} 273 }
274
if (choice == 3) { 275 if
// Example 3 276
cout << "Example 3:" << endl; 277
Snow* var3 = new Rain(); 278
var3->method2(); 279
280
cout << endl; 281
} 282 }
283
284 if
285
286
287
288
289
290
291 }

cout << "Finished Example

}

cout << "Done!
return 0;

}

" << choice << endl << endl;

Exiting." << endl;

")

(choice == 4) {

// Example 4

cout << "Example 4:" << endl;
Snow* var4 = new Rain();
((Rain*) vard)->methodl();

cout << endl;

(choice == 5) {

// Example 5

cout << "Example 5:" << endl;
Snow* var5 = new Fog();

// ((Sleet*) var5)->methodl();

cout << endl;

(choice == 6) {

// Example 6

cout << "Example 6:" << endl;
Snow* var6 = new Sleet();
//((Rain*) var6)->method4();

cout << endl;

(choice == 7) {

// Example 7

cout << "Example 7:" << endl;
Snow* var7 = new Sleet();
((Rain*) var7)->methodl();

cout << endl;



