1 /* Employee.h

2 * CS 106B, Marty Stepp

3 * This file declares the Employee class, the parent (base) class in
4 * our inheritance hierarchy.

5 x/

6

7 #pragma once

8

9 #include <string>

10 using namespace std;

11

12 // A class to represent employees in general.
13 class Employee {

14 public:

15 Employee(string name, int years);

16 virtual int hours() const;

17 virtual string name() const;

18 virtual double salary() const;

19 virtual int vacationDays() const;
20 virtual string vacationForm() const;
21 virtual int years() const;
22 // virtual string getFavoritePokemon() = 0;
23

24 private:

25 string myName;
26 int myYears;
27 };

28



29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

/* Employee.cpp

* CS 106B, Marty Stepp

* This file implements the members of the Employee class, the parent (base)
* class in our inheritance hierarchy.

*/
#include "Employee.h"

Employee: :Employee(string name, int years) {
myName = namej;
myYears = years;

}

int Employee::hours() const {
return 40;

}

string Employee::name() const {
return myName;

double Employee::salary() const {
return 50000.0 + (500 * myYears);

}

int Employee::vacationDays() const {
return 10;

}

string Employee::vacationForm() const {
return "yellow";

}

int Employee::years() const {
return myYears;



66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

/* Lawyer.h
* CS 106B, Marty Stepp
* This file declares the Lawyer class, a subclass
(child class, derived class) in our inheritance hierarchy.

*/
#pragma once

#include "Employee.h"
#include <string>

// Employee edna("Edna Smith", 5);
// Lawyer lisa("Lisa Fiedler", "Stanford", 7);
// lisa.salary()

class Lawyer : public Employee {
// I now have an hours, name, salary, etc. method. yay!
public:
Lawyer (string name, string lawSchool, int years);
virtual double salary() const;
void sue(string person);

private:
string myLawSchool;

}i

/* Lawyer.cpp

* CS 106B, Marty Stepp

* This file implements the members of the Lawyer class, a subclass
(child class, derived class) in our inheritance hierarchy.

*/

#include <iostream>
#include "Lawyer.h"

// call the constructor of Employee superclass?
Lawyer::Lawyer(string name, string lawSchool, int years)
Employee(name, years) {
myLawSchool = lawSchool;

}

// overriding: replace version from Employee class
double Lawyer::salary() const {
return Employee::salary() * 2;

}

void Lawyer::sue(string person) {
cout << "See you in court, " << person << endl;

}



117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

/* Programmer.h
* CS 106B, Marty Stepp
* This file declares the Programmer class, a subclass
(child class, derived class) in our inheritance hierarchy.

*/
#pragma once
#include "Employee.h"

class Programmer : public Employee {
public:
Programmer (string name, int years);
virtual string vacationForm() const;
virtual void code();

/* Programmer.cpp

CS 106B, Marty Stepp

* This file implements the members of the Programmer class, a subclass
* (child class, derived class) in our inheritance hierarchy.

*/

*

#include <iostream>
#include "Programmer.h"

Programmer: :Programmer (string name, int years) : Employee(name, years) {}
string Programmer::vacationForm() const {
return "pink";

}

void Programmer::code() {
cout << "I'm coding up a storm!" << endl;



156 /* polymorphism.h

157 * CS 106B, Marty Stepp

158 * This file declares several classes in an inheritance hierarchy.
159 * We write the method implementations in the .h file for brevity
160 * rather than separating it into a .h and .cpp.

161 */

162

163 #pragma once
164

165 #include <iostream>
166 using namespace std;

167

168 class Snow {

169 public:

170 virtual void method2() {

171 cout << "Snow 2" << endl;
172 }

173

174 void method3() {

175 cout << "Snow 3" << endl;
176 }

177 };

178

179 class Rain : public Snow {

180 public:

181 virtual void methodl() {

182 cout << "Rain 1" << endl;
183 }

184

185 virtual void method2() {

186 cout << "Rain 2" << endl;
187 }

188 };

189

190 class Sleet : public Snow {

191 public:

192 virtual void method2() {

193 cout << "Sleet 2" << endl;
194 Snow: :method2();

195 method3();

196 }

197

198 void method3() {

199 cout << "Sleet 3" << endl;
200 }

201 };

202

203 class Fog : public Sleet {

204 public:

205 virtual void methodl() {

206 cout << "Fog 1" << endl;
207 }

208

209 void method3 () {

210 cout << "Fog 3" << endl;
211 }

212 };



213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

292
293
294
295
296

polymorphism.cpp
* CS 106B, Marty Stepp

* This client program creates several variables of the classes in our
* inheritance hierarchy and then calls methods on them.

*/
#include <iostream>
#include "console.h"
#include "polymorphism.h"
#include "simpio.h"

using namespace std;

int main() {
int choice = -1;
while (choice != 0) {
choice = getInteger("Example to run (1-7, 0 to quit):
if (choice == 1) { 257 if
// Example 1 258
cout << "Example 1l:" << endl; 259
Snow* varl = new Sleet(); 260
varl->method2(); 261
262
cout << endl; 263
} 264 }
265
if (choice == 2) { 266 if
// Example 2 267
cout << "Example 2:" << endl; 268
Snow* var2 = new Rain(); 269
//var2->methodl(); 270
271
cout << endl; 272
} 273 }
274
if (choice == 3) { 275 if
// Example 3 276
cout << "Example 3:" << endl; 277
Snow* var3 = new Rain(); 278
var3->method2(); 279
280
cout << endl; 281
} 282 }
283
284 if
285
286
287
288
289
290
291 }

cout << "Finished Example

}

cout << "Done!
return 0;

}

" << choice << endl << endl;

Exiting." << endl;

")

(choice == 4) {

// Example 4

cout << "Example 4:" << endl;
Snow* var4 = new Rain();
((Rain*) vard)->methodl();

cout << endl;

(choice == 5) {

// Example 5

cout << "Example 5:" << endl;
Snow* var5 = new Fog();

// ((Sleet*) var5)->methodl();

cout << endl;

(choice == 6) {

// Example 6

cout << "Example 6:" << endl;
Snow* var6 = new Sleet();
//((Rain*) var6)->method4();

cout << endl;

(choice == 7) {

// Example 7

cout << "Example 7:" << endl;
Snow* var7 = new Sleet();
((Rain*) var7)->methodl();

cout << endl;



