power.cpp

// power.cpp
// Create a power() function and test it

#include <fstream>
#include <iostream>
#include <iomanip>
#include '"'console.h"
#include "filelib.h"
#include "simpio.h"

using namespace std;

void testPower(int base, int exp, double expected);

double power(int base, int exponent) {

int

>

if(exponent == 0) {
// base case
return 1; // no trebble....
} else if(exponent < 0) {
// recursive case 1
return 1.0 / power(base, -exponent);
} else {
// recursive case 2
return base * power(base, exponent - 1);

main() {

cout << "Recursive power'" << endl;
testPower(2, 5, 32);

testPower(5, 5, 3125);
testPower(0, 6, 0);

testPower (-6, 3, -216);
testPower(6, 0, 1);

testPower(2, -3, 0.125);

cout << "Done!" << endl;

return 0;

void testPower(int base, int exponent, double expected) {

cout << "testPower(" << base << ", ' << exponent << '"):

flush;

double result = power(base, exponent);
cout << "\t'" << result;
if(result == expected) {
cout << "\t[passed]" << endl;
} else {
cout << "\t[failedl" << endl;
X

" <<

towers.cpp

#include <fstream>
#include <iostream>
#include <iomanip>
#include '"'console.h"
#include "timer.h"
#include '"hashset.h"
#include "lexicon.h"
#include '"'queue.h"
#include '"set.h"
#include 'vector.h"
#include '"'grid.h"
#include "filelib.h"
#include "gwindow.h"
#include ''gobjects.h"
#include '"simpio.h"
#include ''ghanoi.h"

using namespace std;

static const int N = 5;

void findSolution(int n, char source, char target, char aux) {
// ALL about that base
if(n == 1) {
moveSingleDisk(source, target);
// Recursive case
} else {
findSolution(n - 1, source, aux, target);
moveSingleDisk(source, target);
findSolution(n - 1, aux, target, source);

int main() {
cout << "Towers of Hanoi" << endl;
initHanoiDisplay(N);
findSolution(N, 'a', 'c', 'b');
return 0;

ghanoi.cpp

/*

* File: ghanoi.cpp

K e m e e e e e e e e me—

* This file implements the graphical Hanoi functions.
*/

#include <iostream>

#include <string>

#include <memory> // For auto ptr
#include "error.h"

#include "ghanoi.h"

#include "gobjects.h"

#include "gwindow.h"

#include "stack.h"

using namespace std;

[*Kkkkkxkxk*x Constants *kkkkkkxx/

/* Maximum permitted disks. */
const int kMaxDisks = 8;

/* Size of the window. */
const double kWindowWidth
const double kWindowHeight

500;
300;

/* Number of spindles. */
const int kNumSpindles = 3;

/* Width of one spindle. */
const int kSpindleWidth = 20;

/* Pixel margin between spindle work areas. */
const double kSpindleMarginSize = 10;

/* Smallest possible disk width. */
const double kMinDiskWidth = 3 * kSpindleWidth;

/* Spindle color: Russet! */
const string kSpindleColor = "#80461B";

/* Colors for each disk. */
const string kDiskColors[l = {
"Red",
"Yellow",
"Green",
“Cyan",
"Blue",,
""Magenta",
"Orange",
"Gray"
X;
/* Border colors for each disk. These are just darker versions of the disk colors
* given above.
*/
const string kDiskBorderColors[l = {
""#800000",
""#808000",
'"#008000",
''#008080",
'"#000080",
'"#800080",
"#804000",
"#404040"
X

/* Default pause time. */
const double kPauseTime = 500;

/* Number of steps in the animation. */
const int kNumAnimationSteps = 50;

struct Spindle {
/* Which GRects are here right now. */
Stack<GRect*> disksHere;

/* The rectangle for this spindle. */
GRect* rect;

/* The start and end x coordinates of the area allocated
* to this spindle. This is the space where disks can be
* moved.

*/
double startX, endX;

/* The center line for the spindle. */
double centerX;

ghanoi.cpp

static struct HanoiGraphics {
auto ptr<GWindow> window;
Vector<Spindle> spindles;

int numDisks;
double diskHeight;
Y hg;

[/ **kkkx** Function Prototypes x**xkxxxx/

void setupSpindles();
void setupDisks();
double diskYPosition(int spindle);

[**kkkx*x*% Implementations *kkxkxkx%x*x/

/* Initializes the display. */
void initHanoiDisplay(int numDisks) {
/* Validate input. */
if (numDisks > kMaxDisks) {
error("Sorry, but we can't support that many disks.");
X

if (numDisks <= 0) {
error("Sorry, but we need a positive number of disks.");

/* Create a new window to work with. */
hg.window.reset(new GWindow(kWindowWidth, kWindowHeight));
hg.window->setWindowTitle("Towers of Hanoi');

/* Determine the height of a single disk. We want to size the disks such that

* each spindle can have all the disks on top of it, then some vertical space to
* show the top of each spindle, then two blank spaces above it. This works

* out to needing a number of "virtual disks'" equal to the total number of disks
* actually used, plus four extras.

*/

int numVirtualDisks = numDisks + 4;

hg.diskHeight = hg.window->getHeight() / numVirtualDisks;

hg.numDisks = numDisks;

/* Initialize the spindles and disks. */
setupSpindles();
setupDisksO);

/* To let people see the setup, pause for a second before returning. */
pause (kPauseTime);
X

/* Sets up the spindles. */

void setupSpindles() {
/* Calculate the total horizontal area that can be allocated to a spindle. */
double workspaceWidth = hg.window->getWidth() / kNumSpindles;

for (int i = 0; i < kNumSpindles; i++) {
Spindle spindle;

/* Set the work area appropriately. */
spindle.startX = workspaceWidth * i + kSpindleMarginSize;
spindle.endX = workspaceWidth * (i + 1) - kSpindleMarginSize;

/* Create a rectangle for this spindle. The spindle will be centered in
* the work area and will have height equal to the number of disks plus

* one (so the spindle is still visible). It will also be bottom-aligned.
*/

double height = (hg.numDisks + 1) * hg.diskHeight;

double y = hg.window->getHeight() - height;

/* Determine where the center Lline is, then center the rectangle around that. */
spindle.centerX = (spindle.startX + spindle.endX) / 2.0;

spindle.rect = new GRect(spindle.centerX - kSpindleWidth / 2.0, y, kSpindleWidth, height);
spindle.rect->setFilled(true);

spindle.rect->setColor(kSpindleColor);

/* Add that to the display. */
hg.window->add(spindle.rect);

/* Add this spindle to the Llist. */
hg.spindles += spindle;

>

/* Creates and sets up all of the disks that will be used in the simulation. */
void setupDisks() {
for C(int i = 0; i < hg.numDisks; i++) {
/* We need to determine the position, color, and size of the disk.

ghanoi.cpp

To size the disk, we will Llinearly interpolate between the workspace
area (the maximum possible width) and the minimum possible disk width
(specified as a constant). In particular, we want the bottom disk to
have a size that perfectly fills the spindle workspace, and we want
the top disk to have size equal to kMinDiskWidth. The formula we
will use for this is the following:

Width of disk O
Width of disk i - 1

Workspace width.
kMinDiskWidth.

Therefore:

*
*
*
*
*
*
*
*
*
*
*
*
*
* width = ((kMinDiskWidth - workspaceWidth) / (numDisks - 1)) * i + workspaceWidth
*

* There is an edge case here when numDisks = 1, so we will special-case it.

*/

double workspaceWidth = hg.spindles[Ol.endX - hg.spindles[OJ].startX;

double width;
if (hg.numbDisks == 1) {
width = workspaceWidth;
} else {
width = ((kMinDiskWidth - workspaceWidth) / (hg.numDisks - 1)) * i + workspaceWidth;

/* Given the width, the x coordinate can be found by taking the center Lline of
* the spindle and backing off by half the width.

*/

double x = hg.spindles[OJ.centerX - width / 2.0;

/* We can determine the y coordinate of the disk by using our existing function
* for determining where the next disk should go on a spindle.

*/

double y = diskYPosition(0);

/* Create the rectangle. */

GRect* disk = new GRect(x, y, width, hg.diskHeight);
disk->setColor(kDiskBorderColorsCil);
disk->setFilled(true);
disk->setFillColor(kDiskColorsCil);

/* Draw the disk. */
hg.window->add(disk);

/* Add the disk to the spindle. */
hg.spindlesC0].disksHere.push(disk);

>

/* Given a spindle number, returns the y coordinate where the next disk
* would be placed on top of that spindle.
*/
double diskYPosition(int spindle) {
if (spindle < 0 || spindle >= hg.spindles.size()) {
error("Invalid spindle number.");

3
/* The position is determined as follows:
*
* 1. Start at the bottom of the window.
* 2. Back off by the number of disks in the stack.
* 3. Back off once more, since we need to give the upper y coordinate.
*
* This works out to windowHeight - (disksInStack + 1) * diskHeight.
*/

return hg.window->getHeight() - (hg.spindlesCspindlel.disksHere.size() + 1) * hg.diskHeight;

/* Given a character, maps that character to a spindle number. */
int charToSpindle(char ch) {
switch (ch) €
case 'A': case 'a': return 0;
case 'B': case 'b': return 1;
case 'C': case 'c': return 2;

X

error("Unknown spindle.");

return 0;
X
/* Given a time through the animation, represented by a number between 0 (start)
* and 1 (end), interpolates where along the trajectory the disk would be at that
* time using a cubic Hermitian spline. This makes the animation Look significantly
* smoother than before.
*
* http://en.wikipedia.org/wiki/Cubic_Hermite spline
*/

ghanoi.cpp

double interpolate(double t) {
return -2 * t *x t * t + 3 x t * t;

/* Animates a disk moving from its current position to the destination. */
void animateDiskPath(GRect* disk, double endX, double endY, double totalTime) {
const double startX = disk->getX(), startY = disk->getY(Q);

/* Animate the motion! */
for (int i = 0; i < kNumAnimationSteps; i++) {
/* Interpolate between the start and end positions. To determine
* how much to interpolate, we use a cubic Hermite spline to map
* from the fraction of the animation completed to a smoother
* animation point.
*/
double x = startX + (endX - startX) * interpolate(double(i) / (kNumAnimationSteps - 1));
double y = startY + (endY - startY) * interpolate(double(i) / (kNumAnimationSteps - 1));
disk->setLocation(x, y);

/* Pause to let the animation progress. This will not work out to pausing

* for exactly the right amount of time because there's some latency involved
* in the graphics calls, but it's "close enough."

*/

pause(totalTime / kNumAnimationSteps);

>

/* Animates a single disk moving from one spindle to another. */
void moveSingleDisk(char startCh, char finishCh) {
/* Convert the start and end spindles to indices. */
int start = charToSpindle(startCh), end = charToSpindle(finishCh);

/* Confirm that the start spindle isn't empty. */
if (hg.spindlesCstartl.disksHere.isEmpty()) {
error("No disks at the start spindle.");

/* Get the disk to move. */
GRect* disk = hg.spindles[startl.disksHere.pop(Q);

/* Make sure we can legally move the disk from the start spindle to the

* end spindle. This uses the size of the GRects as a proxy for the

* size of the disk, which is probably not the best idea. A better

* implementation would use a struct to store both the GRect and its

* logical size.

*/

if ('hg.spindlesLendl.disksHere.isEmpty() &&
hg.spindlesCend].disksHere.top()->getWidth() < disk->getWidth()) {
error('Cannot move a larger disk atop a smaller one.");

/* Determine how long the animation must take for each of the three parts of the
* animation.

*/

double eachAnimationTime = kPauseTime / 3;

/* Move the disk up. */
animateDiskPath(disk, disk->getX(), 0, eachAnimationTime);

/* Move the disk over. We need to compute the new x coordinate by centering
* the disk over the new midline.

*/

double newX = hg.spindleslendl.centerX - disk->getWidth() / 2.0;
animateDiskPath(disk, newX, 0, eachAnimationTime);

/* Move the disk down. */
animateDiskPath(disk, disk->getX(), diskYPosition(end), eachAnimationTime);

/* Update internal state: make sure that the disk is now on the destination
* spindle.

*/

hg.spindlesCendl.disksHere.push(disk);

