power.cpp

// power.cpp
// Create a power() function and test it

#include <fstream>
#include <iostream>
#include <iomanip>
#include '"'console.h"
#include "filelib.h"
#include "simpio.h"

using namespace std;

void testPower(int base, int exp, double expected);

double power(int base, int exponent) {

int

>

if(exponent == 0) {
// base case
return 1; // no trebble....
} else if(exponent < 0) {
// recursive case 1
return 1.0 / power(base, -exponent);
} else {
// recursive case 2
return base * power(base, exponent - 1);

main() {

cout << "Recursive power'" << endl;
testPower(2, 5, 32);

testPower(5, 5, 3125);
testPower(0, 6, 0);

testPower (-6, 3, -216);
testPower(6, 0, 1);

testPower(2, -3, 0.125);

cout << "Done!" << endl;

return 0;

void testPower(int base, int exponent, double expected) {

cout << "testPower(" << base << ", ' << exponent << '"):

flush;

double result = power(base, exponent);
cout << "\t'" << result;
if(result == expected) {
cout << "\t[passed]" << endl;
} else {
cout << "\t[failedl" << endl;
X

" <<



towers.cpp

#include <fstream>
#include <iostream>
#include <iomanip>
#include '"'console.h"
#include "timer.h"
#include '"hashset.h"
#include "lexicon.h"
#include '"'queue.h"
#include '"set.h"
#include 'vector.h"
#include '"'grid.h"
#include "filelib.h"
#include "gwindow.h"
#include ''gobjects.h"
#include '"simpio.h"
#include ''ghanoi.h"

using namespace std;

static const int N = 5;

void findSolution(int n, char source, char target, char aux) {
// ALL about that base
if(n == 1) {
moveSingleDisk(source, target);
// Recursive case
} else {
findSolution(n - 1, source, aux, target);
moveSingleDisk(source, target);
findSolution(n - 1, aux, target, source);

int main() {
cout << "Towers of Hanoi" << endl;
initHanoiDisplay(N);
findSolution(N, 'a', 'c', 'b');
return 0;
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/*

* File: ghanoi.cpp

K e m e e e e e e e e me—

* This file implements the graphical Hanoi functions.
*/

#include <iostream>

#include <string>

#include <memory> // For auto ptr
#include "error.h"

#include "ghanoi.h"

#include "gobjects.h"

#include "gwindow.h"

#include "stack.h"

using namespace std;

[*Kkkkkxkxk*x Constants *kkkkkkxx/

/* Maximum permitted disks. */
const int kMaxDisks = 8;

/* Size of the window. */
const double kWindowWidth
const double kWindowHeight

500;
300;

/* Number of spindles. */
const int kNumSpindles = 3;

/* Width of one spindle. */
const int kSpindleWidth = 20;

/* Pixel margin between spindle work areas. */
const double kSpindleMarginSize = 10;

/* Smallest possible disk width. */
const double kMinDiskWidth = 3 * kSpindleWidth;

/* Spindle color: Russet! */
const string kSpindleColor = "#80461B";

/* Colors for each disk. */
const string kDiskColors[l = {
"Red",
"Yellow",
"Green",
“Cyan",
"Blue",,
""Magenta",
"Orange",
"Gray"
X;
/* Border colors for each disk. These are just darker versions of the disk colors
* given above.
*/
const string kDiskBorderColors[l = {
""#800000",
""#808000",
'"#008000",
''#008080",
'"#000080",
'"#800080",
"#804000",
"#404040"
X

/* Default pause time. */
const double kPauseTime = 500;

/* Number of steps in the animation. */
const int kNumAnimationSteps = 50;

struct Spindle {
/* Which GRects are here right now. */
Stack<GRect*> disksHere;

/* The rectangle for this spindle. */
GRect* rect;

/* The start and end x coordinates of the area allocated
* to this spindle. This is the space where disks can be
* moved.

*/
double startX, endX;

/* The center line for the spindle. */
double centerX;
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static struct HanoiGraphics {
auto ptr<GWindow> window;
Vector<Spindle> spindles;

int numDisks;
double diskHeight;
Y hg;

[/ **kkkx** Function Prototypes x**xkxxxx/

void setupSpindles();
void setupDisks();
double diskYPosition(int spindle);

[**kkkx*x*% Implementations *kkxkxkx%x*x/

/* Initializes the display. */
void initHanoiDisplay(int numDisks) {
/* Validate input. */
if (numDisks > kMaxDisks) {
error("Sorry, but we can't support that many disks.");
X

if (numDisks <= 0) {
error("Sorry, but we need a positive number of disks.");

/* Create a new window to work with. */
hg.window.reset(new GWindow(kWindowWidth, kWindowHeight));
hg.window->setWindowTitle("Towers of Hanoi');

/* Determine the height of a single disk. We want to size the disks such that

* each spindle can have all the disks on top of it, then some vertical space to
* show the top of each spindle, then two blank spaces above it. This works

* out to needing a number of "virtual disks'" equal to the total number of disks
* actually used, plus four extras.

*/

int numVirtualDisks = numDisks + 4;

hg.diskHeight = hg.window->getHeight() / numVirtualDisks;

hg.numDisks = numDisks;

/* Initialize the spindles and disks. */
setupSpindles();
setupDisksO);

/* To let people see the setup, pause for a second before returning. */
pause (kPauseTime);
X

/* Sets up the spindles. */

void setupSpindles() {
/* Calculate the total horizontal area that can be allocated to a spindle. */
double workspaceWidth = hg.window->getWidth() / kNumSpindles;

for (int i = 0; i < kNumSpindles; i++) {
Spindle spindle;

/* Set the work area appropriately. */
spindle.startX = workspaceWidth * i + kSpindleMarginSize;
spindle.endX = workspaceWidth * (i + 1) - kSpindleMarginSize;

/* Create a rectangle for this spindle. The spindle will be centered in
* the work area and will have height equal to the number of disks plus

* one (so the spindle is still visible). It will also be bottom-aligned.
*/

double height = (hg.numDisks + 1) * hg.diskHeight;

double y = hg.window->getHeight() - height;

/* Determine where the center Lline is, then center the rectangle around that. */
spindle.centerX = (spindle.startX + spindle.endX) / 2.0;

spindle.rect = new GRect(spindle.centerX - kSpindleWidth / 2.0, y, kSpindleWidth, height);
spindle.rect->setFilled(true);

spindle.rect->setColor(kSpindleColor);

/* Add that to the display. */
hg.window->add(spindle.rect);

/* Add this spindle to the Llist. */
hg.spindles += spindle;

>

/* Creates and sets up all of the disks that will be used in the simulation. */
void setupDisks() {
for C(int i = 0; i < hg.numDisks; i++) {
/* We need to determine the position, color, and size of the disk.
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To size the disk, we will Llinearly interpolate between the workspace
area (the maximum possible width) and the minimum possible disk width
(specified as a constant). In particular, we want the bottom disk to
have a size that perfectly fills the spindle workspace, and we want
the top disk to have size equal to kMinDiskWidth. The formula we
will use for this is the following:

Width of disk O
Width of disk i - 1

Workspace width.
kMinDiskWidth.

Therefore:

*
*
*
*
*
*
*
*
*
*
*
*
*
* width = ((kMinDiskWidth - workspaceWidth) / (numDisks - 1)) * i + workspaceWidth
*

* There is an edge case here when numDisks = 1, so we will special-case it.

*/

double workspaceWidth = hg.spindles[Ol.endX - hg.spindles[OJ].startX;

double width;
if (hg.numbDisks == 1) {
width = workspaceWidth;
} else {
width = ((kMinDiskWidth - workspaceWidth) / (hg.numDisks - 1)) * i + workspaceWidth;

/* Given the width, the x coordinate can be found by taking the center Lline of
* the spindle and backing off by half the width.

*/

double x = hg.spindles[OJ.centerX - width / 2.0;

/* We can determine the y coordinate of the disk by using our existing function
* for determining where the next disk should go on a spindle.

*/

double y = diskYPosition(0);

/* Create the rectangle. */

GRect* disk = new GRect(x, y, width, hg.diskHeight);
disk->setColor(kDiskBorderColorsCil);
disk->setFilled(true);
disk->setFillColor(kDiskColorsCil);

/* Draw the disk. */
hg.window->add(disk);

/* Add the disk to the spindle. */
hg.spindlesC0].disksHere.push(disk);

>

/* Given a spindle number, returns the y coordinate where the next disk
* would be placed on top of that spindle.
*/
double diskYPosition(int spindle) {
if (spindle < 0 || spindle >= hg.spindles.size()) {
error("Invalid spindle number.");

3
/* The position is determined as follows:
*
* 1. Start at the bottom of the window.
* 2. Back off by the number of disks in the stack.
* 3. Back off once more, since we need to give the upper y coordinate.
*
* This works out to windowHeight - (disksInStack + 1) * diskHeight.
*/

return hg.window->getHeight() - (hg.spindlesCspindlel.disksHere.size() + 1) * hg.diskHeight;

/* Given a character, maps that character to a spindle number. */
int charToSpindle(char ch) {
switch (ch) €
case 'A': case 'a': return 0;
case 'B': case 'b': return 1;
case 'C': case 'c': return 2;

X

error("Unknown spindle.");

return 0;
X
/* Given a time through the animation, represented by a number between 0 (start)
* and 1 (end), interpolates where along the trajectory the disk would be at that
* time using a cubic Hermitian spline. This makes the animation Look significantly
* smoother than before.
*
* http://en.wikipedia.org/wiki/Cubic_Hermite spline
*/
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double interpolate(double t) {
return -2 * t *x t * t + 3 x t * t;

/* Animates a disk moving from its current position to the destination. */
void animateDiskPath(GRect* disk, double endX, double endY, double totalTime) {
const double startX = disk->getX(), startY = disk->getY(Q);

/* Animate the motion! */
for (int i = 0; i < kNumAnimationSteps; i++) {
/* Interpolate between the start and end positions. To determine
* how much to interpolate, we use a cubic Hermite spline to map
* from the fraction of the animation completed to a smoother
* animation point.
*/
double x = startX + (endX - startX) * interpolate(double(i) / (kNumAnimationSteps - 1));
double y = startY + (endY - startY) * interpolate(double(i) / (kNumAnimationSteps - 1));
disk->setLocation(x, y);

/* Pause to let the animation progress. This will not work out to pausing

* for exactly the right amount of time because there's some latency involved
* in the graphics calls, but it's "close enough."

*/

pause(totalTime / kNumAnimationSteps);

>

/* Animates a single disk moving from one spindle to another. */
void moveSingleDisk(char startCh, char finishCh) {
/* Convert the start and end spindles to indices. */
int start = charToSpindle(startCh), end = charToSpindle(finishCh);

/* Confirm that the start spindle isn't empty. */
if (hg.spindlesCstartl.disksHere.isEmpty()) {
error("No disks at the start spindle.");

/* Get the disk to move. */
GRect* disk = hg.spindles[startl.disksHere.pop(Q);

/* Make sure we can legally move the disk from the start spindle to the

* end spindle. This uses the size of the GRects as a proxy for the

* size of the disk, which is probably not the best idea. A better

* implementation would use a struct to store both the GRect and its

* logical size.

*/

if ('hg.spindlesLendl.disksHere.isEmpty() &&
hg.spindlesCend].disksHere.top()->getWidth() < disk->getWidth()) {
error('Cannot move a larger disk atop a smaller one.");

/* Determine how long the animation must take for each of the three parts of the
* animation.

*/

double eachAnimationTime = kPauseTime / 3;

/* Move the disk up. */
animateDiskPath(disk, disk->getX(), 0, eachAnimationTime);

/* Move the disk over. We need to compute the new x coordinate by centering
* the disk over the new midline.

*/

double newX = hg.spindleslendl.centerX - disk->getWidth() / 2.0;
animateDiskPath(disk, newX, 0, eachAnimationTime);

/* Move the disk down. */
animateDiskPath(disk, disk->getX(), diskYPosition(end), eachAnimationTime);

/* Update internal state: make sure that the disk is now on the destination
* spindle.

*/

hg.spindlesCendl.disksHere.push(disk);



