
power.cpp 1

// power.cpp
// Create a power() function and test it

#include <fstream>
#include <iostream>
#include <iomanip>
#include "console.h"
#include "filelib.h"
#include "simpio.h"

using namespace std;

void testPower(int base, int exp, double expected);

double power(int base, int exponent) {
 if(exponent == 0) {
 // base case
 return 1; // no trebble....
 } else if(exponent < 0) {
 // recursive case 1
 return 1.0 / power(base, -exponent);
 } else {
 // recursive case 2
 return base * power(base, exponent - 1);
 }
}

int main() {
 cout << "Recursive power" << endl;
 testPower(2, 5, 32);
 testPower(5, 5, 3125);
 testPower(0, 6, 0);
 testPower(-6, 3, -216);
 testPower(6, 0, 1);
 testPower(2, -3, 0.125);
 cout << "Done!" << endl;
 return 0;
}

void testPower(int base, int exponent, double expected) {
 cout << "testPower(" << base << ", " << exponent << "): " <<
flush;
 double result = power(base, exponent);
 cout << "\t" << result;
 if(result == expected) {
 cout << "\t[passed]" << endl;
 } else {
 cout << "\t[failed]" << endl;
 }
}

towers.cpp 1

#include <fstream>
#include <iostream>
#include <iomanip>
#include "console.h"
#include "timer.h"
#include "hashset.h"
#include "lexicon.h"
#include "queue.h"
#include "set.h"
#include "vector.h"
#include "grid.h"
#include "filelib.h"
#include "gwindow.h"
#include "gobjects.h"
#include "simpio.h"
#include "ghanoi.h"

using namespace std;

static const int N = 5;

void findSolution(int n, char source, char target, char aux) {
 // All about that base
 if(n == 1) {
 moveSingleDisk(source, target);
 // Recursive case
 } else {
 findSolution(n - 1, source, aux, target);
 moveSingleDisk(source, target);
 findSolution(n - 1, aux, target, source);
 }
}

int main() {
 cout << "Towers of Hanoi" << endl;
 initHanoiDisplay(N);
 findSolution(N, 'a', 'c', 'b');
 return 0;
}

ghanoi.cpp 1

/*
 * File: ghanoi.cpp
 * ----------------
 * This file implements the graphical Hanoi functions.
 */

#include <iostream>
#include <string>
#include <memory> // For auto_ptr
#include "error.h"
#include "ghanoi.h"
#include "gobjects.h"
#include "gwindow.h"
#include "stack.h"
using namespace std;

/******** Constants ********/

/* Maximum permitted disks. */
const int kMaxDisks = 8;

/* Size of the window. */
const double kWindowWidth = 500;
const double kWindowHeight = 300;

/* Number of spindles. */
const int kNumSpindles = 3;

/* Width of one spindle. */
const int kSpindleWidth = 20;

/* Pixel margin between spindle work areas. */
const double kSpindleMarginSize = 10;

/* Smallest possible disk width. */
const double kMinDiskWidth = 3 * kSpindleWidth;

/* Spindle color: Russet! */
const string kSpindleColor = "#80461B";

/* Colors for each disk. */
const string kDiskColors[] = {
 "Red",
 "Yellow",
 "Green",
 "Cyan",
 "Blue",
 "Magenta",
 "Orange",
 "Gray"
};
/* Border colors for each disk. These are just darker versions of the disk colors
 * given above.
 */
const string kDiskBorderColors[] = {
 "#800000",
 "#808000",
 "#008000",
 "#008080",
 "#000080",
 "#800080",
 "#804000",
 "#404040"
};

/* Default pause time. */
const double kPauseTime = 500;

/* Number of steps in the animation. */
const int kNumAnimationSteps = 50;

struct Spindle {
/* Which GRects are here right now. */
Stack<GRect*> disksHere;

/* The rectangle for this spindle. */
GRect* rect;

/* The start and end x coordinates of the area allocated
 * to this spindle. This is the space where disks can be
 * moved.
 */
double startX, endX;

/* The center line for the spindle. */
double centerX;

};

ghanoi.cpp 2

static struct HanoiGraphics {
auto_ptr<GWindow> window;
Vector<Spindle> spindles;

int numDisks;
double diskHeight;

} hg;

/******** Function Prototypes ********/

void setupSpindles();
void setupDisks();
double diskYPosition(int spindle);

/******** Implementations ********/

/* Initializes the display. */
void initHanoiDisplay(int numDisks) {

/* Validate input. */
if (numDisks > kMaxDisks) {

error("Sorry, but we can't support that many disks.");
}

if (numDisks <= 0) {
error("Sorry, but we need a positive number of disks.");

}

/* Create a new window to work with. */
hg.window.reset(new GWindow(kWindowWidth, kWindowHeight));
hg.window->setWindowTitle("Towers of Hanoi");

/* Determine the height of a single disk. We want to size the disks such that
 * each spindle can have all the disks on top of it, then some vertical space to
 * show the top of each spindle, then two blank spaces above it. This works
 * out to needing a number of "virtual disks" equal to the total number of disks
 * actually used, plus four extras.
 */
int numVirtualDisks = numDisks + 4;
hg.diskHeight = hg.window->getHeight() / numVirtualDisks;
hg.numDisks = numDisks;

/* Initialize the spindles and disks. */
setupSpindles();
setupDisks();

/* To let people see the setup, pause for a second before returning. */
pause(kPauseTime);

}

/* Sets up the spindles. */
void setupSpindles() {

/* Calculate the total horizontal area that can be allocated to a spindle. */
double workspaceWidth = hg.window->getWidth() / kNumSpindles;

for (int i = 0; i < kNumSpindles; i++) {
Spindle spindle;

/* Set the work area appropriately. */
spindle.startX = workspaceWidth * i + kSpindleMarginSize;
spindle.endX = workspaceWidth * (i + 1) - kSpindleMarginSize;

/* Create a rectangle for this spindle. The spindle will be centered in
 * the work area and will have height equal to the number of disks plus
 * one (so the spindle is still visible). It will also be bottom-aligned.
 */
double height = (hg.numDisks + 1) * hg.diskHeight;
double y = hg.window->getHeight() - height;

/* Determine where the center line is, then center the rectangle around that. */
spindle.centerX = (spindle.startX + spindle.endX) / 2.0;
spindle.rect = new GRect(spindle.centerX - kSpindleWidth / 2.0, y, kSpindleWidth, height);
spindle.rect->setFilled(true);
spindle.rect->setColor(kSpindleColor);

/* Add that to the display. */
hg.window->add(spindle.rect);

/* Add this spindle to the list. */
hg.spindles += spindle;

}
}

/* Creates and sets up all of the disks that will be used in the simulation. */
void setupDisks() {

for (int i = 0; i < hg.numDisks; i++) {
/* We need to determine the position, color, and size of the disk.

ghanoi.cpp 3

 *
 * To size the disk, we will linearly interpolate between the workspace
 * area (the maximum possible width) and the minimum possible disk width
 * (specified as a constant). In particular, we want the bottom disk to
 * have a size that perfectly fills the spindle workspace, and we want
 * the top disk to have size equal to kMinDiskWidth. The formula we
 * will use for this is the following:
 *
 * Width of disk 0 = Workspace width.
 * Width of disk i - 1 = kMinDiskWidth.
 *
 * Therefore:
 *
 * width = ((kMinDiskWidth - workspaceWidth) / (numDisks - 1)) * i + workspaceWidth
 *
 * There is an edge case here when numDisks = 1, so we will special-case it.
 */
double workspaceWidth = hg.spindles[0].endX - hg.spindles[0].startX;

double width;
if (hg.numDisks == 1) {

width = workspaceWidth;
} else {

width = ((kMinDiskWidth - workspaceWidth) / (hg.numDisks - 1)) * i + workspaceWidth;
}

/* Given the width, the x coordinate can be found by taking the center line of
 * the spindle and backing off by half the width.
 */
double x = hg.spindles[0].centerX - width / 2.0;

/* We can determine the y coordinate of the disk by using our existing function
 * for determining where the next disk should go on a spindle.
 */
double y = diskYPosition(0);

/* Create the rectangle. */
GRect* disk = new GRect(x, y, width, hg.diskHeight);
disk->setColor(kDiskBorderColors[i]);
disk->setFilled(true);
disk->setFillColor(kDiskColors[i]);

/* Draw the disk. */
hg.window->add(disk);

/* Add the disk to the spindle. */
hg.spindles[0].disksHere.push(disk);

}
}

/* Given a spindle number, returns the y coordinate where the next disk
 * would be placed on top of that spindle.
 */
double diskYPosition(int spindle) {

if (spindle < 0 || spindle >= hg.spindles.size()) {
error("Invalid spindle number.");

}

/* The position is determined as follows:
 *
 * 1. Start at the bottom of the window.
 * 2. Back off by the number of disks in the stack.
 * 3. Back off once more, since we need to give the upper y coordinate.
 *
 * This works out to windowHeight - (disksInStack + 1) * diskHeight.
 */
return hg.window->getHeight() - (hg.spindles[spindle].disksHere.size() + 1) * hg.diskHeight;

}

/* Given a character, maps that character to a spindle number. */
int charToSpindle(char ch) {

switch (ch) {
case 'A': case 'a': return 0;
case 'B': case 'b': return 1;

 case 'C': case 'c': return 2;
}

 error("Unknown spindle.");
 return 0;
}

/* Given a time through the animation, represented by a number between 0 (start)
 * and 1 (end), interpolates where along the trajectory the disk would be at that
 * time using a cubic Hermitian spline. This makes the animation look significantly
 * smoother than before.
 *
 * http://en.wikipedia.org/wiki/Cubic_Hermite_spline
 */

ghanoi.cpp 4

double interpolate(double t) {
return -2 * t * t * t + 3 * t * t;

}

/* Animates a disk moving from its current position to the destination. */
void animateDiskPath(GRect* disk, double endX, double endY, double totalTime) {

const double startX = disk->getX(), startY = disk->getY();

/* Animate the motion! */
for (int i = 0; i < kNumAnimationSteps; i++) {

/* Interpolate between the start and end positions. To determine
 * how much to interpolate, we use a cubic Hermite spline to map
 * from the fraction of the animation completed to a smoother
 * animation point.
 */
double x = startX + (endX - startX) * interpolate(double(i) / (kNumAnimationSteps - 1));
double y = startY + (endY - startY) * interpolate(double(i) / (kNumAnimationSteps - 1));
disk->setLocation(x, y);

/* Pause to let the animation progress. This will not work out to pausing
 * for exactly the right amount of time because there's some latency involved
 * in the graphics calls, but it's "close enough."
 */
pause(totalTime / kNumAnimationSteps);

}
}

/* Animates a single disk moving from one spindle to another. */
void moveSingleDisk(char startCh, char finishCh) {

/* Convert the start and end spindles to indices. */
int start = charToSpindle(startCh), end = charToSpindle(finishCh);

/* Confirm that the start spindle isn't empty. */
if (hg.spindles[start].disksHere.isEmpty()) {

error("No disks at the start spindle.");
}

/* Get the disk to move. */
GRect* disk = hg.spindles[start].disksHere.pop();

/* Make sure we can legally move the disk from the start spindle to the
 * end spindle. This uses the size of the GRects as a proxy for the
 * size of the disk, which is probably not the best idea. A better
 * implementation would use a struct to store both the GRect and its
 * logical size.
 */
if (!hg.spindles[end].disksHere.isEmpty() &&
 hg.spindles[end].disksHere.top()->getWidth() < disk->getWidth()) {

error("Cannot move a larger disk atop a smaller one.");
}

/* Determine how long the animation must take for each of the three parts of the
 * animation.
 */
double eachAnimationTime = kPauseTime / 3;

/* Move the disk up. */
animateDiskPath(disk, disk->getX(), 0, eachAnimationTime);

/* Move the disk over. We need to compute the new x coordinate by centering
 * the disk over the new midline.
 */
double newX = hg.spindles[end].centerX - disk->getWidth() / 2.0;
animateDiskPath(disk, newX, 0, eachAnimationTime);

/* Move the disk down. */
animateDiskPath(disk, disk->getX(), diskYPosition(end), eachAnimationTime);

/* Update internal state: make sure that the disk is now on the destination
 * spindle.
 */
hg.spindles[end].disksHere.push(disk);

}

