cantor.cpp

#include <fstream>
#include <iostream>
#include <jomanip>
#include <math.h>
#include '"console.h"
#include "timer.h"
#include "hashset.h"
#include '"lexicon.h"
#include '"queue.h"
#include '"set.h"
#include "vector.h"
#include '"'grid.h"
#include "filelib.h"
#include '"gwindow.h"
#include "gobjects.h"
#include "simpio.h"
#include "point.h"

using namespace std;

// display constants

static const int SCREEN WIDTH = 500;
static const int SCREEN HEIGHT = 500;
static const int LEVEL HEIGHT = 20;
static const int RECT HEIGHT = 10;
static const int INSET = 20;

*/

Function: Interpolate

Given two points and a fraction (assumed to be in the range
[0, 11, the function returns the point "fraction'" amount of the
way between p1 and p2.

GPoint interpolate(GPoint p1, GPoint p2, double fraction) {

b

double deltaX = p2.getX() - pl.getX();

double deltaY = p2.getY() - pl.getY(Q);

// if you intrepolate the x and y coords that gives you 2d interpolation
double x = pl.getX() + fraction * deltaX;

double y = pl.getY() + fraction * deltaY;

GPoint newPoint(x, y);

return newPoint;

/* Function: Draw Thick Line

* Because sometimes thin Llines just don't Llook good enough in
* a lecture demo. Actually draws a rectangle instead of a line :)

*/

void drawThickLine(GWindow & w, GPoint Lleft, GPoint right) {

>

double width = right.getX() - left.getX();

// this is called a pointer. We will learn about them Llater.
GRect * rect = new GRect(width, RECT_HEIGHT);
rect->setFilled(true);

w.add(rect, left.getX(), left.getY() - RECT_HEIGHT/2);

/* Function: Get Lowered Point

* Returns a GPoint which is LEVEL HEIGHT pixels lLower than the one
* passed in (has a larger Y value).
*/

GPoint getLoweredPoint(GPoint point) {

>

GPoint next(point.getX(), point.getY() + LEVEL HEIGHT);
return next;

/* Function: Draw Cantor

*/

* A recursive function that draws a Cantor Fractal between points
* "left" and "right.'" The fractal will have "level'" numbers of Llevels.

cantor.cpp

void drawCantor(GWindow & w, int Llevel, GPoint Lleft, GPoint right) {
if(level > 0) {
pause(500);
// 1. draw a single Lline
drawThickLine(w, Lleft, right);

GPoint oneThird = interpolate(left, right, 0.33);
GPoint twoThird = interpolate(left, right, 0.67);

// draw the Lleft (smaller) cantor
drawCantor(w, level - 1, getLoweredPoint(left), getLoweredPoint(oneThird));

// draw the right (smaller) cantor
drawCantor(w, level - 1, getLoweredPoint(twoThird), getLoweredPoint(right));

/* Function: Main

* Draw a Cantor Fractal on the screen.
*/
int main() {

int depth = 4;

GWindow w(SCREEN WIDTH, SCREEN HEIGHT);
GPoint Left(INSET, INSET); -

GPoint right(SCREEN WIDTH - INSET, INSET);
drawCantor(w, depth, left, right);

return 0;

snowflake.cpp

#include <fstream>
#include <iostream>
#include <jomanip>
#include <math.h>
#include '"console.h"
#include "timer.h"
#include "hashset.h"
#include '"lexicon.h"
#include ''queue.h"
#include '"set.h"
#include "vector.h"
#include '"grid.h"
#include "filelib.h"
#include '"gwindow.h"
#include ''gobjects.h"
#include "simpio.h"
#include "point.h"

using namespace std;
// useful math constants

static const double COS_60
static const double SIN 60

0.5; //value of cos(60 degrees)
sqrt(3)*0.5; //value of sin(60 degrees)

// display constants

static const int SCREEN WIDTH = 1000;

static const int SCREEN HEIGHT = SCREEN WIDTH;

static const int BASE Y = SCREEN HEIGHT - SCREEN HEIGHT * .4;
static const int BASE LEFT X = 170; -

static const int BASE_RIGHT X = SCREEN_WIDTH - 170;
/* Function: Interpolate

* Given two points and a franction (assumed to be in the range
* [0, 11, the function returns the point '"fraction'" amount of the
* way between p1 and p2.
*/
GPoint interpolate(GPoint p1, GPoint p2, double fraction) {
double deltaX = p2.getX() - pl.getX();
double deltaY = p2.getY() - pl.getY(Q);
double x = pl.getX() + fraction * deltaX;
double y = pl.getY() + fraction * deltaY;
GPoint newPoint(x, y);
return newPoint;
3

/* Method: Equilatoral Tip

* Given two points of an equilateral triangle, this method returns the third.
* It assumes that the first paramenter is the bottom lLeft of the triangle
*/
GPoint equilatoralTip(GPoint p1, GPoint p2) {
double deltaX = (p2.getX() - pl.getXx());
double deltaY = (p2.getY() - pl.getY());
double x = pl.getX() + (deltaX*CO0S 60 + deltaY*SIN 60);
double y = pl.getY() + (deltaY*COS 60 - deltaX*SIN 60);
GPoint tip(x, y); - -
return tip;

3

/* Method: Draw Flake Line

K - m e e e ceceeee e emm--—a-

* Recursively draws a snowflake Line (with a given Llevel).
*/

void drawFlakeLine(GWindow & window, int level, GPoint start, GPoint end) {
// base case
if (level == 0) {
window.drawLine(start,end);
} else {

snowflake.cpp

GPoint a = interpolate(start, end, 0.33);
GPoint b = interpolate(start, end, 0.67);
GPoint t = equilatoralTip(a, b);
drawFlakeLine(window, level -1, start, a);
drawFlakeLine(window, level - 1, a, t);
drawFlakeLine(window, level - 1, t, b);
drawFlakeLine(window, level -1, b, end);

>

/* Draw a Snowflake using recursive draw flake Lline.
* Top

* ok ok ¥ *
~
-

*BottomLeft BottomRight
*/
int main() {

int depth = 10;

GWindow w(SCREEN WIDTH, SCREEN HEIGHT);
GPoint bottomLeft(BASE LEFT X, BASE Y);
GPoint bottomRight(BASE RIGHT X, BASE Y);
GPoint top = equilatoralTip(bottomLeft, bottomRight);
drawFlakeLine(w, depth, bottomLeft, bottomRight);

// drawFlakeLine(w, depth, bottomLeft, top);

// drawFlakeLine(w, depth, top, bottomRight);

// drawFlakeLine(w, depth, bottomRight, bottomLeft);
return 0;

