Boggle YEAH Hours

Brahm Capoor

Road Map

Lecture review

Road Map

Assignment overview

Road Map

Q&A!

Recursive Backtracking

Choose. Explore. Unchoose. Repeat.

Recursion vs backtracking

bool subseq(string &s1, string &s2) {
(52 f(J)) ;
(Sl == ff)}) ;
(si[e] == s2[@]){
string rl = si. (1);
string r2 = s2. (1);
(ri, r2);

} else {
string rl = si. (1);
(rl, s2);

Recursion vs backtracking

(si[e] == s2[@]){
string ril sl.substr(1);
string r2 = s2.substr(1);
(ril, r2);

} else {
string sl.substr(1);
(ri, s2);

In recursion, you only ever do one
recursive call at every level of
the recursion

In recursion, you know that your
recursive call will work (it’s the
leap of faith!)

Recursion vs backtracking

string LCS(string &s1, string &s2) {
(s1 == “” || s2 ==)
(si[e s2[0]){

(s1[0] == s2[0]){ string r2 = s2. (1);
string rl = sl.substr(1); string r2 = s2. (1);
string r2 = s2.substr(1); sif[e] + (r1, r2);

(rl, r2); {
} else { string ril
string sl.substr(1); string r2
(ri, s2); string pl (s1, r2);
string p2 (rl, s2);
(p1. () > p2.) A
pl;

sl. (1);
s2. (1);

} else {
P2;

Recursion vs backtracking

(si[e] == s2[0]){
string rl = sl.substr(1);
string r2 = s2.substr(1);
(ril, r2);
} else {
string sl.substr(1);
(ri, s2); string pl = (s1, r2);
string p2 = (rl, s2);
(p1. () > p2.
pl;
} else {
p2;

Recursion vs backtracking

e Multiple recursive calls at every
level of the function call

e Backtracking is about finding and
weighing your options

string pl
string p2
(p1.

} else {

(s1, r2);

(rl, s2);
() > p2.
pl;

p2;

Types of recursion & backtracking

Determine whether a solution exists

Types of recursion & backtracking

Find a solution

Types of recursion & backtracking

Find the best solution

Types of recursion & backtracking

Count the number of solutions

Types of recursion & backtracking

Print/find all the solutions

Types of recursion & backtracking

Print/find all the solutions
See midterm review slides for more detail!

Classes

Interface

// Person.h // Person.cpp

Person { Person: :Person(string name) {
->name = name;
// constructor(s) }
Person(string name)
[Person::string getName(){
* Write sick (and public) ->name;

* code prototypes here }
*/

string name;

/>I<

* Write sick (and secret)
* code prototypes here

*/

Interface

// Person.h
Person {

// constructor(s)
Person(string name)

/*

* Write sick (and public)
* code prototypes here

*/

string name;

/>I<

* Write sick (and secret)
* code prototypes here

*/

// Person.cpp

Person: :Person(string name) {
->name = name;

}

Person::string getName(){
->name;

}

Another file, far far away (or not)

Person me = (“Brahm”);

cout << me. () << endl; //“Brahm”

Boggle! .

Logistics:
e Due May 10
e Pair programming allowed!
o Partner needs to be in the
same section

® CS 1068 Boggle

Ha ha ha, | destroyed you. Better luck next time, puny human!

Human Computer

treat hewn tart awns

tint tints wins haen
hate
henry
hern
inns
neat
nine
rath
rents

earn
haet
hater
henrys
hets
inter
neath
ninety
rathe
retry
sine
stern
stints
tawney
tennist

tawneys
tennists
tenty
that
theta
tinner
trets
twenty
twist

entry
hare
heart
hent
inert
intreat
newt
nits
renin
retwist
sinner
stew
tare
tear
tens
tern
thaw
thew
tins
trey
twin
twister

year

entwist
hart
heat
hents
inner
near
newts
rate
rent
rewin
sinter
stey

yearn

256

The Rules

Starter code structure

boggleplay.cpp

“Client to perform console Ul and work with your
Boggle class to play a game”

“..not meant to be the place to store the majority of
the game’s state, logic or algorithms...”

“...no recursion or backtracking should take place in
boggleplay...”

Boggle.h & Boggle.cpp

“files for a Boggle class representing the state of
the current Boggle game”

“the majority of your code”

“..required members...”

Starter code structure

boggleplay.cpp Boggle.h & Boggle.cpp
“Client to perform console Ul and work with your “files for a Boggle class representing the state of
Boggle class to play a game” the current Boggle game”
“..not meant to be the place to store the majority of “the majority of your code”

the game’s state, logic or algorithms...”
“..required members...”

“...no recursion or backtracking should take place in
boggleplay...”

Also bogglegui . h, but worry about this last!

Game Setup

[Drawing the board (array, length);
o Custom board
o Shaking the cubes
m Representing the cubes
m Representing the board
m Random locations and faces

(prompt, reprompt);

Get a word from the user...

Make sure to error check!

Human Word Search

e Find where the word you're searching for can start

e Recursively explore from this point
o |s the public method enough, or do you need a helper function?

Types of recursion & backtracking

Jetermine whether a solution exists

Find a solution

Find the best solution
Count the number of solutions

Print/find all the solutions

Human Word Search

e Anexample (courtesy of previous YEAH hours)

humanWordSearch Demo
word = “smart”

T R E

N A R

humanWordSearch Demo
word = “smart”

R E

A R

humanWordSearch Demo
word = “smart”

E

R

humanWordSearch Demo
word = “smart”

humanWordSearch Demo
word = “smart”

* We found the first letter
A T R E Mark it as used
e Why?
* Explore the rest of
the word

humanWordSearch Demo
word = “mart”

* We found the first letter
A T R E Mark it as used

e Why?
* Highlight square
 Look atits

A R neighbors for the
N second letter.

humanWordSearch Demo
word = “mart”

* We found the first letter
T R E Mark it as used

e Why?
* Highlight square
 Look atits

neighbors for the
N A R second letter.

humanWordSearch Demo
word = “mart”

* We found the first letter
T R E Mark it as used

e Why?
* Highlight square
 Look atits

neighbors for the
N A R second letter.

humanWordSearch Demo
word = “mart”

e« We found the first letter

A T R E Mark it as used
e Why?

* Highlight square

 Look atits

neighbors for the
N A R second letter.

humanWordSearch Demo
word = “mart”

e« We found the first letter

A T R E Mark it as used
e Why?

* Highlight square

 Look atits

neighbors for the
N A R second letter.

humanWordSearch Demo
word = “mart”

e« We found the first letter

A T R E Mark it as used
e Why?

* Highlight square

 Look atits

neighbors for the
N A R second letter.

humanWordSearch Demo
word = “mart”

e« We found the first letter

A T R E Mark it as used
e Why?

* Highlight square

 Look atits

neighbors for the
N A R second letter.

humanWordSearch Demo
word = “mart”

e« We found the first letter

A T R E Mark it as used
e Why?

* Highlight square

 Look atits

neighbors for the
N A R second letter.

humanWordSearch Demo
word = “mart”

* We found the first letter
A T R E Mark it as used

e Why?
* Highlight square
 Look atits

neighbors for the
N A R second letter.
* Found it,

U V] B D now do it
again.

humanWordSearch Demo
word = “art”

e« We found the first letter

A T R E Mark it as used
e Why?

* Highlight square

 Look atits

neighbors for the
A R second letter.

humanWordSearch Demo
word = “art”

* We found the first letter
A T R E Mark it as used

e Why?
* Highlight square
 Look atits

neighbors for the
A R next letter.

humanWordSearch Demo
word = “art”

* We found the first letter
A T R E Mark it as used

e Why?
* Highlight square
 Look atits

A R neighlbors for the
next letter.
* Found the
next letter!
B D Let’s do it
again.
D A N E

humanWordSearch Demo
word = “rt”

e« We found the first letter

A T R E Mark it as used
e Why?

* Highlight square

 Look atits

neighbors for the
R next letter.

humanWordSearch Demo
...a few steps later

* How do we know when
E we are here?
* That’s our base case

 What if that

R first “S” did

not work out?
* Keep looking

The user ends their turn...

(by pressing enter)

Computer Word Search

e Find all the words on the board
e Also backtracking

Types of recursion & backtracking

Jetermine whether a solution exists

Find a solution

Find the best solution
Count the number of solutions

Print/find all the solutions

Computer Word Search

lexicon.

e When do you stop?
o ltcan’t be when you find a word
o Once you've found “ban”, you can still find “banter”

Computer Word Search

lexicon.containsPrefix(pre);

// pre 1is a possible string prefix

e Anexample (courtesy of previous YEAH hours)

computerWordSearch () Demo
word so far: “E”

Select each neighbor in turn

Q E and recurse down.

computerWordSearch () Demo
word so far: “EA”

Q E

Select each neighbor in turn
and recurse down.

computerWordSearch () Demo

word so far: “EAQ”

|
| Select each neighbor in turn
and recurse down.

BUT WAIT! EAQ
S R A R is not the start
B of any english
word! so should we

U V K H continue??

computerWordSearch () Demo
word so far: “EA”

Q E

Select each neighbor in turn
and recurse down.

computerWordSearch () Demo
word so far: “EAS”

|
I | Select each neighbor in turn

and recurse down.

computerWordSearch () Demo

word so far: “EASR”

|
I I | | Select each neighbor in turn
and recurse down.

Q E |But wait, no
word begins
A R |with EASR!

computerWordSearch () Demo
word so far: “EAS”

|
I | Select each neighbor in turn

and recurse down.

computerWordSearch () Demo

word so far: “EASU”

|
I | | Select each neighbor in turn
and recurse down.

Q E |But wait, no
word begins
A R |with “EASU”!
K H
Il M | E J 0

computerWordSearch () Demo
word so far: “EAS”

|
I | Select each neighbor in turn

and recurse down.

computerWordSearch () Demo

word so far: “EASV”

|
I | | Select each neighbor in turn
and recurse down.

Q E |sTop!No
words start
A R |with “EASV”!

computerWordSearch () Demo
word so far: “EAS”

I | Select each neighbor in turn
and recurse down.

Q i We have looked
at all of S’s
A R neighbors, so

we will head

U \V/ K H back up.

computerWordSearch () Demo
word so far: “EA”

Q E

Select each neighbor in turn
and recurse down.

computerWordSearch () Demo
word so far: “EAR”

|
I | Select each neighbor in turn
and recurse down.

Q E “EAR” is a word, but it is
not 4 letters.

computerWordSearch () Demo

word so far: “EARS”

| . :
I I | | Select each neighbor in turn
and recurse down.

Q E “EARS”! Hey, that’s a word
and it’s 4 letters at least.

Let’s add it to
A R |ourset, and
keep looking!

computerWordSearch () Demo

word so far: “EARSU”

| |
I | Select each neighbor in turn

I
| | and recurse down.

Time for the GUI!

Figure out what each function in bogglegui . h does and how/when to use it.

BoggleGUI::initialize(row, col) ifyouwanttocall initialize(row, col)

endl;

